

Are Grid Owners Underpaid? A Multi-Model Approach to Allowed Equity Returns

Alexander Heiß

Executive Summary

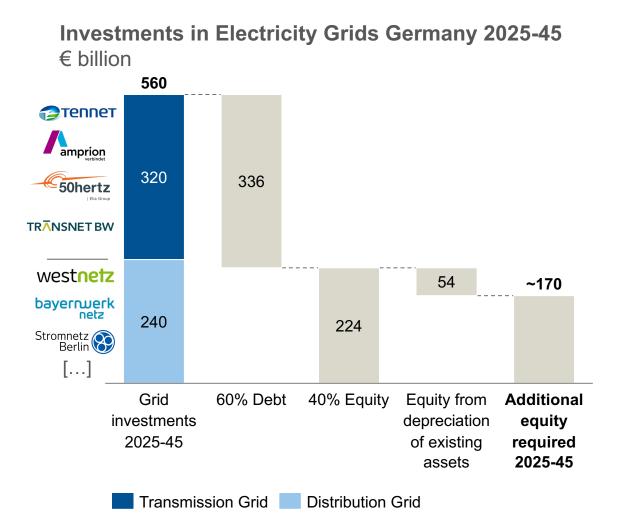
Motivation:

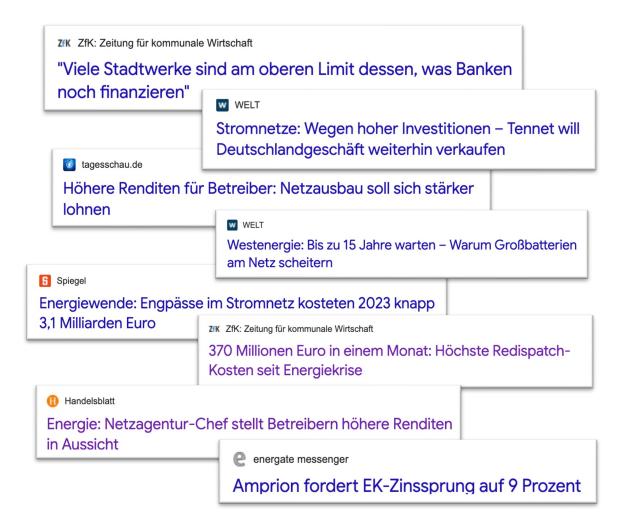
- High grid investments of ~€560B until 2045 require ~€170B additional equity
- BNetzA's current return-on-equity (ROE) model is not dynamic & reliable (5-year reg. periods, manual adjustments, ...)

Research Questions:

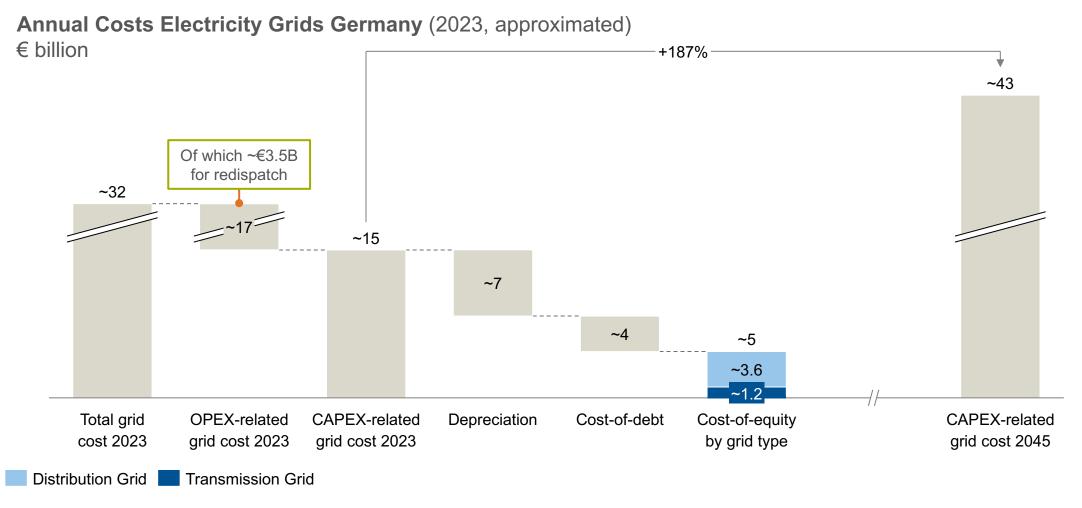
- What ROE should German grid owners receive so they can refinance on capital markets?
- How to design a system that adjusts to capital market changes?

Contribution:

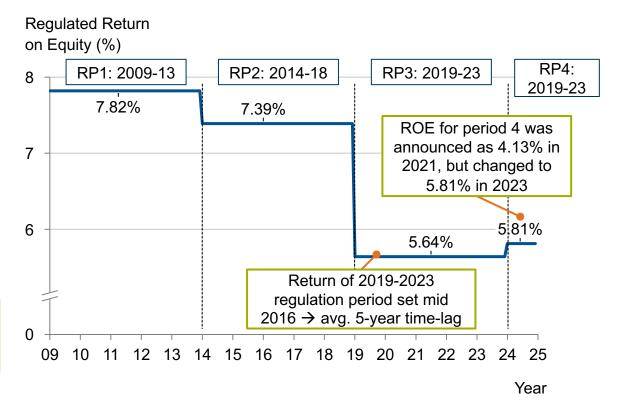

- Compared 3 common cost-of-equity approaches over last 15 years (CAPM, Dividend-Discount-Model, Factor-Model)
- Developed a model-average approach as a possible long-term framework for regulators


Results and Conclusion:

- Current BNetzA CAPM-methodology leads to a >5 year time-lag of regulated-return vs. actual market conditions
 - → Return rate adjustments/ regulatory periods should be shorter to adjust to market changes
- Dividend-Discount-Model and Factor-Model find much higher returns than CAPM
 - → Regulated returns ~2%p. lower than suggested model-average approach since 2019


Motivation | Investments of €560B into grid infrastructure needed until 2045 – grid owners struggle to finance ~€170B additional equity

Background | Cost-of-equity is about 15% of total grid costs – strong growth expected due to large investments

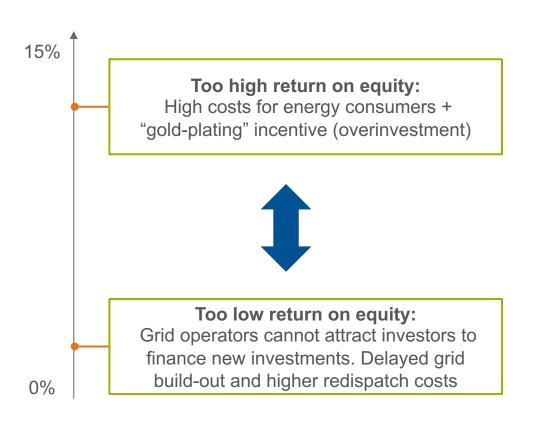


Regulation Germany | Currently regulated return only calculated using CAPM method with long time lag to actual market conditions

Components Capital Asset Pricing Model (CAPM)

Regulated Return on **Equity** 7.82% 4.23% 3.59% Market Risk Premium Risk-free Rate Regulated Grids Usually government 4.55% 0.79 bond yield, here Bundesbank General Market Risk Beta factor Regulated **Premium Equities** Grids Umlaufrendite 10y avg Average global equity Market volatility of market premium vs. comparable listed grid bonds since 1900 owners

Regulated Return on Equity (ROE) (after tax)



xxx Values Regulation Period 1 (2009-13)

Source: Bundesnetzagentur

Research question | The allowed return on equity should be in line with comparable investments to enable investment and avoid too high costs

Research questions:

- What is the right return on equity?
- How can the return dynamically adjust to a changing capital market environment?

Methodology | We use the most common method from three approaches to asset-pricing/cost-of-capital estimation

→ See backup for model assumptions

Asset-pricing / cost-of-capital methods

Market-based single factor models

Classical CAPM

Total Market Return (TMR)

...

Easy to understand and frequently used historical bottom-up model

$$r_e = R_f + \beta_i \cdot MRP$$

[ROE = Risk-free rate + (Risk of Regulated Grid firms vs. market * Equity market risk premium)]

Arbitrage-pricing-theory (Multi-factor models)

Fama-French Five-Factor Model

Three-Factor Model

Empirically proven historical model, frequently used for asset pricing

 $r_e = R_f + \beta_M(\text{Market}) \cdot \lambda_M + \beta_S(\text{Size}) \cdot \lambda_S + \beta_V(\text{Value}) \cdot \lambda_V + \beta_P(\text{Profitability}) \cdot \lambda_P + \beta_I(\text{Investment}) \cdot \lambda_I$

[ROE = Risk-free rate + Traits (Factors) that explain returns (Factor loading * Factor premiums)]

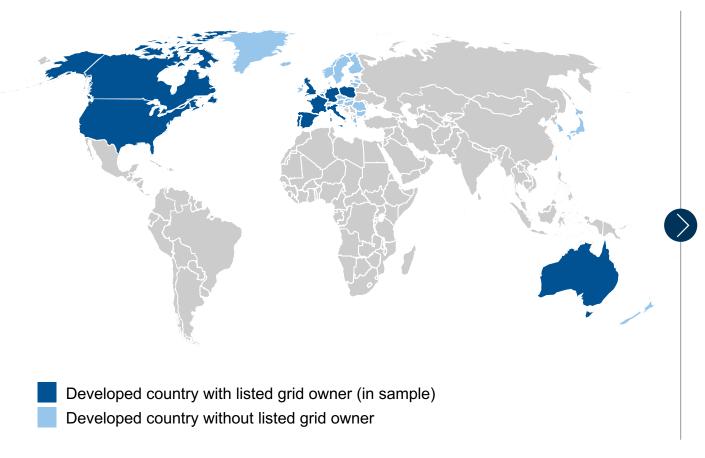
Implied cost-of-equity models

Dividend-Discount-Model (DDM)

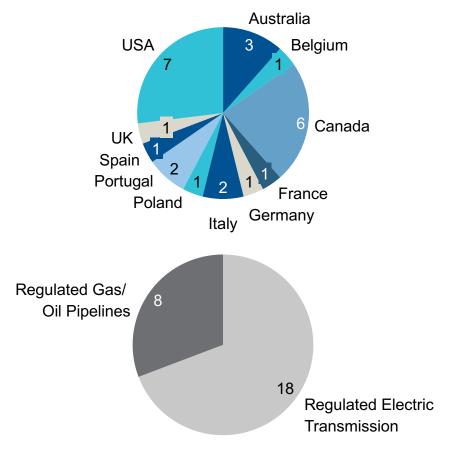
Index/Market based ICC

..

Future looking model based on discounting of actual returns


$$r_e = \frac{D_1}{P_0} + g$$

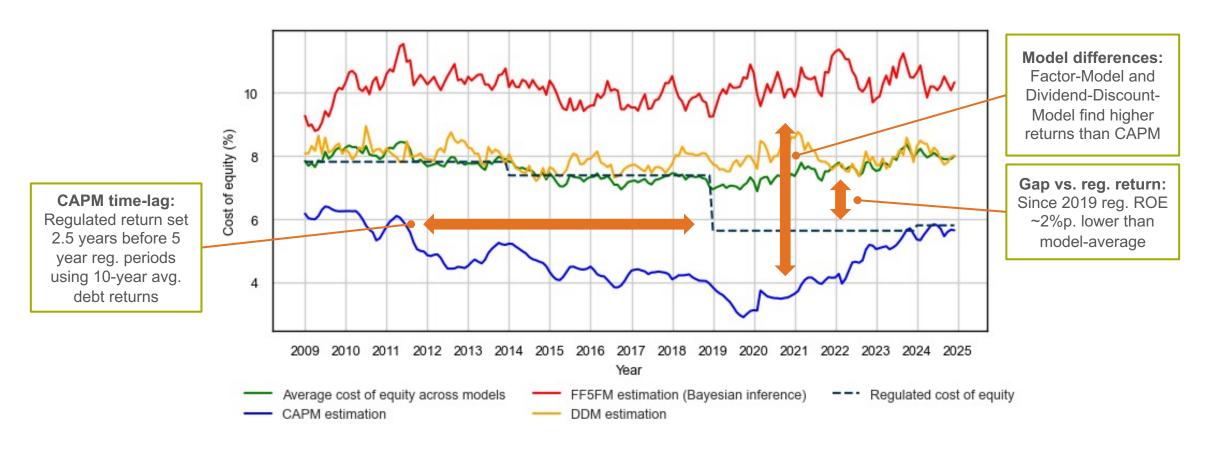
[ROE = Dividend return + Growth rate]



Sample | 26 firms with focus on regulated transmission assets in sample

Screening of all public companies with regulated transmission assets in developed countries

26 firms in sample by country and asset type



Source: Bloomberg 8

Results | Regulated return with long time-lag to dynamic CAPM and ~2%p. lower than model-average since 2019

Resulting cost-of-equity

Conclusion | Dynamic, multi-model approach best suited to set right equity return for financing of grid expansion

Results

- Due to rapid grid expansion grid operators need
 €170B additional equity until 2045
- Currently cost-of-equity make up ~15% of total grid costs
- Returns should be in line with capital market and neither too high or low
- Long time-lag in current methodology leads to returns differing from market conditions
- Cost-of-equity methods DDM and FF5FM find higher returns than CAPM
- Regulated return is ~2% lower than threemethod average since 2019

Implications for Regulators

- Return rate adjustments/ regulatory periods should be shorter to adjust to market changes
- Current **returns might be too low** to enable grid owners' refinancing

Methodology | Three different methods applied to estimate the cost-of-equity

Method	Calculation	Assumptions
(1) Capital Asset Pricing Model (CAPM)	$r_e = R_f + \beta_i \cdot MRP$	 Risk-free rate from 10Y govt. bond yields (AAA-rated countries + US, no FX-adjustment); 2-year beta; MRP since 1900 from DMS dataset.
	[ROE = Risk-free rate + (Risk of Regulated Grid firms vs. market * Equity market risk premium)]	
(2) Fama-French Five- Factor Model (FF5FM)	$\begin{split} r_e &= R_f + \beta_M(\text{Market}) \cdot \lambda_\text{M} + \beta_S(\text{Size}) \cdot \lambda_\text{S} + \beta_V(\text{Value}) \cdot \lambda_\text{V} \\ &+ \beta_P(\text{Profitability}) \cdot \lambda_\text{P} + \beta_I(\text{Investment}) \cdot \lambda_\text{I} \end{split}$	 Monthly performance vs. risk-free rate, Fama- French Factor values; Betas from signif. equities (p<0.1); 12-months smooth. + Bayesian inference.
	[ROE = Risk-free rate + Traits (Factors) that explain returns (Factor loading * Factor premiums)]	
(3) Dividend Discount Model (DDM)	$r_e = \frac{D_1}{P_0} + g$	Dividends + Share buybacks last 12 months; avg. share price of last month; 3.5% growth rate.
	[ROE = Dividend return + Growth rate]	