Redesigning automated market power mitigation in electricity markets

Strommarkttreffen 29.11.2024, Hertie School

Jacqueline Adelowo^{1,2} Moritz Bohland³

¹ifo Institute at the University of Munich

²Politecnico di Torino

³Technical University Munich

Motivation

• Market regulators typically screen for market power (and its abuse)

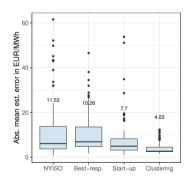
- Some regulators go beyond and mitigate non-competitive auction bids to competitive reference levels (marginal cost proxies)
- Issue: Marginal cost are private information of suppliers

Research questions

- 1. How can plant-specific reference levels be derived at reasonable effort for the market operator?
- 2. What potential for welfare transfers and welfare gains do these mitigation mechanisms have?

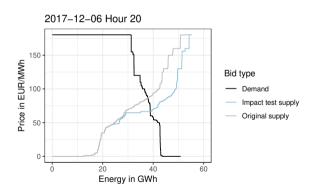
- Benchmark for AMPs are U.S. markets (NYISO, CAISO, MISO etc.)
- Four-step procedure
 - 1. Screening for market power (pivotal supply situation)
 - 2. Conduct threshold (excess pricing)
 - Impact threshold (relevant market price impact)
 - 4. Non-competitive bids are mitigated to reference levels
- Reference level should reflect a competitive bid level ⇒ marginal cost

Reference level calculation


Approach	NYISO (Bench- mark)	Best-response	Start-up	Clustering	MC engineering esti- mate
Calculation	Rolling 90-day mean of past bids	Response function to residual demand and forward contracts	Rolling 90-day mean of past bids	Rolling 90-day mean of past bids	Bottom-up calcula- tion (fuel, heat rate, policy cost etc.)
Input price adjust- ment	Yes	Not applicable	Yes	Yes	
Excl. start-up cost	-	Not applicable	Yes	Yes	
Plant clusters	-	Not applicable	-	Yes	
Intuition	IssuesDistorted by start- up costStrategically ma- nipulatable	Hortaçsu and Puller (2008), Klemperer and Meyer (1989), and Wolak (2000, 2003, 2007)	Reguant (2014)	Brown and Eckert (2022) and Shawhan et al. (2011)	

Precision of reference levels

Application to hourly auction data of the Iberian day-ahead market (for coal & gas plants)



Estimation error in absolute terms. Sample period 01.04.2017–31.03.2018.

Simulation

Simulation of AMP with all 4 reference level calculations

- Conduct test
- Impact test
- If both fail:
 - \rightarrow Mitigation to reference level

Failed impact test in the Clustering approach for the 20th hour (19:00-20:00) of a Thursday in December, leading to mitigation.

Welfare implications of preferred Clustering approach

Robust welfare gains

• 0.83-1-01 % welfare gain per mitigated hour (vs. 0.57-0.42 % in NYISO)

Decomposition of welfare gains

- Only Clustering approach with true productive efficiency gains
- 13.060 € productive efficiency & 17.800 € allocative efficiency gains per mitigated hour

Reculte

Substantial welfare transfers

- Supplier surplus 46-54% (per mitigated hour)
- Buyer surplus + 26% (per mitigated hour)

Conclusion

- Potentials to increase precision of detection and mitigation of noncompetitive bidding
- Simulation shows substantial potential for welfare transfers and dead-weight-loss decreasing efficiency gains
- Detection and mitigation of market power abuse especially important in markets with large windfall profits (renewables, gas price crisis)
 - \rightarrow European Commission (2022) and Graf et al. (2021)

Thank you!

✓ adelowo@ifo.de

× @jaadelowo

Published paper

https://doi.org/10.1016/j.ijindorg.2024.103108

References

Brown, David P. and Andrew Eckert (2022). "Pricing Patterns in Wholesale Electricity Markets: Unilateral Market Power or Coordinated Behavior?" In: The Journal of Industrial Economics 70.1. pp. 168–216. DOI: 10.1111/joi.e.12284.

European Commission (2022). "Short-Term Energy Market Interventions and Long Term Improvements to the Electricity Market Design – a course for action". In: COM/2022/236 final. URL: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM: 2022:236.FIN.

Graf, Christoph et al. (2021). "Market Power Mitigation Mechanisms for Wholesale Electricity Markets: Status Quo and Challenges". In: Program on Energy and Sustainable Development Working Paper. URL: https://fsi.stanford.edu/publication/market-power-mitigation-mechanisms-wholesale-electricity-markets-status-quo-and.

Hortaçsu, Ali and Steven L. Puller (2008). "Understanding strategic bidding in multi-unit auctions: a case study of the Texas electricity spot market". In: The RAND Journal of Economics 39.1, pp. 86–114. DOI: 10.1111/j.0741-6261.2008.00005.x.

Klemperer, Paul D. and Margaret A. Meyer (1989). "Supply function equilibria in oligopoly under uncertainty". In:

Econometrica: Journal of the Econometric Society, pp. 1243–1277.

Reguant, Mar (2014). "Complementary bidding mechanisms and startup costs in electricity markets". In: The Review of Economic Studies 81.4, pp. 1708–1742. DOI: 10.1093/restruct/pdu/022

Shawhan, Daniel L. et al. (2011). "An experimental test of automatic mitigation of wholesale electricity prices". In: International Journal of Industrial Organization 29.1, pp. 46–53. ISSN: 0167-7187. DOI: 10.1016/j.ijindorg.2010.06.005.

Wolak, Frank A. (2000). "An Empirical Analysis of the Impact of Hedge Contracts on Bidding Behavior in a Competitive Electricity Market *". In: International Economic Journal 14.2, pp. 1–39. DOI: 10.1080/101.6873000000017.

 (2003). "Identification and Estimation of Cost Functions Using Observed Bid Data". In:

Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress. Vol. 2, p. 133.

 (2007). "Quantifying the supply-side benefits from forward contracting in wholesale electricity markets". In: Journal of Applied Econometrics 22.7, pp. 1179–1209. DOI: 10.1002/1ae.389.

