The Kraftwerksstrategie and the future of gas power plants in Germany

Short presentation at Strommarkttreffen Workshop in Berlin
April 19, 2024
Aurora provides market leading forecasts & data-driven intelligence for the global energy transition

- Power markets
- Renewables & PPAs
- Storage
- Grid & Congestion
- Electric vehicles
- Hydrogen
- Carbon
- Natural gas

14 offices and two more coming soon
600+ market experts
850+ subscribing companies
150+ transactions supported in 2023

Source: Aurora Energy Research
Our market leading models underpin a comprehensive range of seamlessly integrated services to best suit your needs

Advisory
Access tailored expert advice and analytics for your crucial projects
Trusted advice and dedicated support for strategy, investments, transactions and policy engagement
1,400+ projects globally

Software Solutions
Make standard analysis bespoke through direct access to our models
Unique SaaS subscriptions to create your own scenarios and asset-specific investment cases
150+ company licenses

Subscription Analytics
Receive regularly updated forecasts, sample investment cases and timely deep-dives
Industry-standard outlook reports, bankable price forecasts and strategic insights for power and commodities
750+ subscribing companies

Models & Data
Market-leading models for power, gas, hydrogen, carbon, oil & coal markets
Proprietary and continuously updated cutting-edge models populated with highest quality curated datasets
Developed over 10 years, 40+ dedicated modellers

Source: Aurora Energy Research
Coal plant closures and a growing power demand will create a gap between peak demand and dispatchable thermal capacity

Peak demand and dispatchable capacity without new gas-fired power plants

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Peak demand</th>
<th>Gas</th>
<th>Hard coal & lignite</th>
<th>Nuclear</th>
<th>Other dispatchable technologies</th>
<th>Share of dispatchable capacity of peak demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>95</td>
<td>130%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>89</td>
<td>113%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>63</td>
<td>60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Residual load duration curve in 2030

GW

- The last 15 GW are only called up in 157 hours
- More than 30 GW of power from flexible and dispatchable sources is required in 4000 hours

1) Based on the Aurora Central scenario, but no further buildout of gas-fired power plants (except for CHPs) is assumed. 2) Includes CCGTs, OCGTs and other thermal peaker. 3) Includes hydro, biomass and other thermal. 4) Residual load is defined as total energy demand, minus the power production of wind & solar.

Source: Aurora Energy Research, BNetzA
There are several technologies available to complement renewable generation; this study focuses on gas and H₂-fired power plants in line with the KWS.

A. Short-duration flexibility
- Battery storage
 - Lithium-ion
 - Redox-flow
- Compressed air storage
- Natural gas OCGT & reciprocating engines
- Hydrogen OCGT & reciprocating engines

B. Mid- to long-duration flexibility
- Natural gas CCGT + CCS
- Biomass & CCS
- Biogas
- E-methane
- Natural gas CCGT
- Hydrogen CCGT

C. Alternative flexibility sources
- Interconnection
- Demand side response
 - Smart charging electric vehicles
 - (Hybrid) heat pumps
 - Electric boilers
 - Industrial demand side response
 - Electrolysers

Focus of this study

Electricity generation and demand in an exemplary week with low wind and solar generation in January 2045

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

- **A**: Short-duration flexibility
- **B**: Mid- to long-duration flexibility
- **C**: Alternative flexibility sources

Sources: Aurora Energy Research
The government has committed to developing concepts for a market-based capacity mechanism to be launched by 2028.

Focus for this mechanisms is on technology-neutrality, i.e. allowing different generation technologies, storage, and demand-side response options to participate.

The new gas-fired power plants incentivised via the KWS are meant to be “fully integrated” into the capacity mechanism.

The role of CCS is not yet defined.

Germany’s Kraftwerksstrategie (KWS) is set to deploy 10 GW of H₂-ready power plants as a bridge to a potential capacity mechanism in 2028.

Up to 10 GW of new H₂-ready gas plants form the core of the KWS

New H₂-ready natural gas power plants
- 4 auction rounds of 2.5 GW each for CAPEX subsidies
- Full conversion to hydrogen\(^1\) required between 2035 and 2040\(^2\)
- OPEX subsidy to cover the fuel price difference to natural gas\(^3\)
- Funding needs of 15 – 20 bn €, to be financed out of the KTF\(^4\)

H₂ power plants
- 500 MW of pure H₂ plants for research and exploratory purposes

Auction for long duration energy storage (LDES) technologies
- Technology-neutral tender for LDES technologies, details still under consideration

1) Not restricted to electrolytic (green) hydrogen, blue hydrogen can also be used as a fuel. 2) Exact conversion date to be defined in 2032. 3) Available until 2040 for max. 800 full-load hours per year. 4) Klima- und Transformatiionsfonds (Climate and transition fund).

Source: Aurora Energy Research
For the KWS to successfully incentivise the buildout of new gas plants, key questions need to be answered before start of the auctions

When will the KWS plants and other newbuilt plants have to convert to hydrogen? Is there a single date for all plants?
The business case is driven by profits in the "natural gas era", but limited OPEX subsidies during "H2 era" can avoid uncertainty for KWS assets.

How does the KWS interact with the announced capacity mechanism?
After conversion to hydrogen and end of the OPEX support, we expect additional capacity revenues necessary for continued operation.

Which costs are covered by the OPEX subsidy?
Sizeable differences not only exist for the fuel cost (gas versus hydrogen), but also for grid connection costs.

Is there a need for a local incentive?
Especially in the south, coal plants leaving the market put pressure on the system, but regional subsidy elements are not trivial.
Disclaimer and Copyright

General Disclaimer
This document is provided "as is" for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited and its subsidiaries from time to time (together, "Aurora"), their directors, employees agents or affiliates (together, Aurora’s "Associates") as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward-looking statements
This document contains forward-looking statements and information, which reflect Aurora’s current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

Copyright
This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora, unless otherwise stated. This document is confidential and it may not be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.