Dispatchable capacity in IAM Germany's net-zero scenario using Bidirectional model coupling

Chen Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, Gunnar Luderer
cchen.gong@pik-potsdam.de

Strommarkt Treffen 2024 April 19
Motivation

- Decarbonization process: 2020~2100
- Wind and solar output: vary from hour to hour

=> major challenge for long-term climate mitigation model to incorporate hourly resolution!

For REMIND, we parametrize based on REMIX, but long-term model does not “see” hourly peak load and the capacity requirement

- With coupling to hourly model, the long term models “see” capacity constraints of peak residual load, also market values of various generation (average revenue per MWh of XX type of generation)
- e.g. 2 degree climate policy for Germany (see below): with coupling, a lot more gas capacities!
- Some dispatchable capacity growth but not as much as generation
Motivation

- Decarbonization process: 2020~2100
- Wind and solar output: vary from hour to hour

=> major challenge for long-term climate mitigation model to incorporate hourly resolution!

For REMIND, we parametrize based on REMIX, but long-term model does not “see” hourly peak load and the capacity requirement

- With coupling to hourly model, the long term models “see” capacity constraints of peak residual load, also market values of various generation (average revenue per MWh of XX type of generation)
- e.g. 2 degree climate policy for Germany (see below): with coupling, a lot more gas capacities!
- Some dispatchable capacity growth but not as much as generation
MODEL CONVERGENCE FOR QUANTITIES AND PRICES IN THE POWER SECTOR

hourly data input:
exogenous time series
- VRE availability
- demand

DIETER (PSM)

coupling IAM - PSM
- power demand (h4)
- fuel costs (h2)
- CO2 price (h2)
- technology costs (fixed and variable costs) (h1-h2)
- capacities (as lower bounds) (c8)

power sector
- CAPEX learning, capacity tracking, natural retirement and early closure, adjustment cost

secondary Energy
- final Energy
 - building
 - industry
 - transport

primary Energy
- climate
- energy system
- macro-economy: population, GDP

market value (h3)
annual average electricity price (h3)
capacity factor (h6)
curtailment (h7)
residual peak hourly demand (c7)
Germany net-zero 2045 scenario

80 years x 8760h!

electrification: power demand increase
RLDC: sorted time series to visualize peak load hour, wind and solar shortfall and minimum required dispatchable capacities

Net-zero year: peak residual load is about 60% covered by dispatchable and pumped hydro power consumption from electrolysis, which produces H2 to be used in other sectors (mostly industry) in gas or synfuel form

H2 to be used in CHP (as a power sector long-term storage)
Net-zero year: 100 hours - price set by OCGT or higher (~400$/MWh)
900 hours - set by CCGT (250$/MWh) with carbon price:
peak price is higher

additional policies are needed to deal with high spot market prices of gas capacity
=> capacity market, flexible demand incentive, etc..

H₂ production (flexible); electricity scarcity price spikes will not impact H₂ production/price if it is flexible

However, if imported H₂ suddenly become scarce could push up fuel cost for a few hundred hours (peaking hours, which then impact average power cost)!

no policy: peak price is 100$/MWh)
Summary, outlook and discussion

● **What we did:** proof-of-method study of model coupling on Germany net-zero power sector
 ○ novelty: both long-term planning horizon and short-term high resolution

● **What we found:**
 ○ Total annual power demand increase because power price is cheaper in the coupled model (more electrification)
 ○ minimum **capacity requirements** and **high scarcity prices**
 -> reserve market?
 ○ dispatchable capacity of Germany in 2045 is around **60% of peak hourly load** (rest is instantaneous wind and solar plus battery discharge)

● **Impact:** studies such as this can help settle debates on power plant capacity strategy “Kraftwerkstrategie”
 ○ **stress testing** system with different weather years, climate extremes
 ○ how much **storage** capacity should be invested?
 ○ how much **dispatchable** capacity should be invested (e.g. H2-ready gas power)
 ○ what does **price** structure look like with various market mechanism (also import exposure, prevent imported inflation from green fuel abroad)

● **Ongoing work:** apply it to large regions like China and India (more spatial nodes)
 ○ capacity building, experience transfer (is this network interested?)
Thank you!
Backup slides
Combine two methodologies of energy system modelling

- soft-coupling of IAM & power sector model, *iterative*, bi-directional, model convergence

- coupling is "*price-based*": give both models sufficient freedom to invest, “as endogenous as possible”
Combine two methodologies of energy system modelling

- soft-coupling of IAM & power sector model, iterative, bi-directional, model convergence

- coupling is “price-based”: give both models sufficient freedom to invest, “as endogenous as possible”

 - “price” of supply: generation variability corresponds to different market value to the system, given fixed demand

 - “price” of demand: demand-side flexibility corresponds to different “capture price” of electricity in the system, given variable supply
Combine two methodologies of energy system modelling

- soft-coupling of IAM & power sector model, iterative, bi-directional, model convergence

- coupling is "price-based": give both models sufficient freedom to invest, “as endogenous as possible”
 - “price” of supply: generation variability corresponds to different market value to the system, given fixed demand
 - “price” of demand: demand-side flexibility corresponds to different “capture price” of electricity in the system, given variable supply

- full convergence -> joint equilibrium of both models, “best of both worlds”

Main result: we derived convergence conditions, criteria, and achieved almost full numerical convergence
Quantities vs. iteration
Price difference vs. iteration
Models’ price difference time series vs. iterations

(a) Electricity price difference (REMIN - DIETER)

(b) Time-averaged (%)
Quantity convergence
Generation vs. time (end of coupled convergence)
Capacity vs. time (end of coupled convergence)
Price convergence
System price-cost structure vs. time (end of coupled convergence)
Technology market-LCOE structure vs. time (end of coupled convergence)

(a) REMIND

- Solar
- Wind Offshore
- Wind Onshore
- Hydro
- Biomass
- CCGT
- OCGT
- Coal

- Market value
- Market value + peak demand capacity shadow price (&other)
- REMIND electricity price

- Storage Cost
- Grid Cost
- CO2 Price
- OMV Cost
- OMF Cost
- Investment Cost
- Fuel Cost
- Adjustment Cost
Technology market-LCOE structure vs. time (end of coupled convergence)

(b) DIETER

<table>
<thead>
<tr>
<th>Technology</th>
<th>2020</th>
<th>2040</th>
<th>2060</th>
<th>2080</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Offshore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Onshore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCGT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCGT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Market value
- Market value + standing capacity shadow price (&other)
- DIETER annual avg. electricity price

- Storage Cost
- Grid Cost
- CO2 Price
- OMV Cost
- OMF Cost
- Investment Cost
- Fuel Cost
- Adjustment Cost
Conceptual intuition for “price-based coupling”: price differentiation tells quantities to move

Assume: solar > 50% share, so solar market value is below annual average price
Remaining differences:

Mostly two-folds:
- unable to fully harmonize “brown-field” and “green-field” models. REMIND gets full historical capacity “for free”, DIETER bounds are more relaxed

- unable to fully harmonize “real-world optimal” and “model optimal”