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The Rationale behind Distribution ST T e

ESSEN

Forecasts

Introduction

= Weron (2014) maintains that, despite being well established in other
fields of time series analysis, distribution forecasting has received little
attention in electricity price forecasting.

= Yet, increased production of variable RES causes higher uncertainty.

= Thus, the usage of point forecasts only reduces the quality of decision
making, due to the reduced amount of information provided.

= Forecasting the distribution of hourly prices is more appropriate for
— the valuation of assets’ flexibilities and optionality,
— short-term decision making such as dispatch,
— and providing further information about forecast quality.
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An Econometric-Stochastic Approach (I) s

Forecasting Approach

The present econometric-stochastic model combines several
established approaches to adequately capture distribution
characteristics.

Panel Data
— We model the prices of individual hours separately.

Multiple Regression Analysis

— We use a linear regression model to account for the deterministic
components of prices and to derive the residuals.

Mapping to Normal Distribution

— We map the empirical cumulative distribution function of the residuals to a
standard normal cumulative distribution to account for non-normality of the
price distribution.
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An Econometric-Stochastic Approach (II) s

Forecasting Approach

= Factor Model

— We apply a factor model to the transformed residual time series to identify
common factors and to thereby account for cross correlation between hours.

= ARMA-GARCH Class

— We model the time series of the identified factors using ARMA-GARCH
specifications to account for autocorrelation and time-varying volatility.

= Monte Carlo Simulation

— We reverse the estimation procedure using Monte Carlo simulations to derive
prediction samples.

= We essentially characterize the distribution of x;; (the price of hour h
at day t) as the empirical cumulative distribution function of a Monte
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The Evaluation Framework (I) =

Evaluation of Forecast Quality

= Given a sample {y;, I;}I—;, we seek to test whether y.|I; has a specific
parametric form.

= Thus, we wish to test the following null hypothesis
HO: Pr(yt = yllt, 60) = Ft(ylltt 90)

= That is, we seek to assess calibration.

= The evaluation of distribution forecasts rests on the probability integral
transform (PIT), also know as Rosenblatt transformation (1952).

— Under the null hypothesis F; (|1, 8o) follows a uniform distribution on [0,1].

— Additionally, the PIT values from a k-step-ahead forecast should be at most
(k-1)-dependent, depending on information set ..

— The PIT values of the distribution forecasts, F;(y:|l;,8r), over a hold-out
sample can be used to assess calibration.
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The Evaluation Framework (Il) 1

Evaluation of Forecast Quality

= The graphical evaluation framework

— The classic econometric testing framework rests on a graphical analysis of
these PIT values.

— Histogram and Sample Autocorrelation Function

— Yet, it should be noted that (k-1) dependence hinges crucially on I being
equal to the “relevant” information set.

= Evaluation and formal tests

— Depending on the information set, the PIT values may exhibit autocorrelation,
which formal tests have to account for.

— Thus, classic Kolmogorov-type tests that rely on i.i.d. observations cannot be
applied.

— Knippel (2015) proposes a test that is robust to autocorrelation and for which
standard critical values can be used.
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The Evaluation Framework (l11) Ll

Evaluation of Forecast Quality

= An alternative evaluation framework

— The probabilistic forecasting test framework rests mainly on the evaluation
of the uniformity of the PIT values (graphically and formally), sharpness and
various scores measures.

— The proposed paradigm is to minimize sharpness subject to calibration,
where sharpness is a characteristic of the forecast only and refers to the
concentration of the distribution forecast.

—> Calibration constitutes a necessary but not sufficient condition for an
iIdeal distribution forecast. We thus require the PIT values to be at
least uniformly distributed.

- Any dependence patterns may shed light on the characteristics of the
Information set underpinning our specification.

House of
Energy Markets
& Finance 2/12/2017



UNIVERSITAT

Application (1) A

Application and Results

= We test our econometric-stochastic approach against German day-
ahead prices for 2014 and 2015 separately

= We consider 12 different specifications.
— ARMA-GARCH Class: AR(1), AR(2) and ARMA(1,1)-GARCH(1,1)
— Factor Model: on and off
— Sample Size: 730 and 184

= We calculate daily out-of-sample day-ahead forecasts using a rolling
window for 2014 and 2015; thus, running 8760 Monte Carlo price
simulations for each year and specification.

= Based on the evaluation framework, we conclude ...
— ... the AR(2) model with the factor model to work best for 2014
— ... the AR(2) model without the factor model to work best for 2015
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Application (lI) L4

Application and Results

= We fail to reject the null hypothesis of calibration for 22 hours of 2015
under the preferred specification.
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Application (llI) abil

Application and Results

= We falil to reject the null hypothesis of calibration for 19 hours of 2014
under the preferred specification.
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Application (1V) A

Application and Results

= The formal calibration tests, due to Knuppel (2015), confirms the
results of the preceding graphical analysis.

Subsample Method
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= The present econometric-stochastic approach delivers calibrated
distribution forecasts.
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Application (V) A

Application and Results

= Yet, the analysis of the sample autocorrelation function uncovers
violation of the at most (k-1) dependence criterion for 2015.
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Conclusion

Conclusion

= The econometric-stochastic approach is able to capture the main
characteristics of daily hourly prices in Germany and delivers
calibrated distribution forecasts.

= Afew comments on model particularities are warranted

— Factor models adequately address cross correlations and ensure smooth
price paths

— Time-varying volatility seems to be less important for price processes of
individual hours, as GARCH specifications do not improve results

— The conditional distributions are correctly specified with respect to the
considered information set; yet, dynamic misspecification seems to be
present.
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Estimation and Simulation Procedure (I)

Backup

® (i) Determine the main deterministic drivers and the residuals

— Regression model to account for deterministic factors

Xeh = Bo + B1(Len — Sen) + B2(Wen) + B3(Cepare) + Ba (Coase) + €n

B: Regression coefficients
— L¢p: Load
— S¢.p: Solar
~ Wi p: Wind
— Ceoarr and Cgqs ¢ typical variabel costs of power plants incl. emission costs

— & p: Residuals
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Estimation and Simulation Procedure (II)

Backup

= (ii) Map the empirical CDF of residuals onto a normal distribution

Th: &p > @71 (C],(st_h))
— Cy,: Empirical CDF of residuals in hour h
— @: CDF of the standard normal distribution
— Graphical representation corresponds to Q-Q-plot (Quantile Mapping)

= (iii) Factor Model
— Normal Residuals
Ueh = Th(€en)

— The common factors are constructed using a principal component analysis on
the correlation matrix of the transformed factors.
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Estimation and Simulation Procedure (lil)

Backup

= (iv) Factor time series are modelled with ARMA-GARCH specifications
— ARMA (1,1): fri= @ui fr—1it Qg We—q,i+ Wy,
— a: Coefficients for ARMA part

— fii: Factors i from differenttime steps t
— Wy, : Error term from differenttime steps and Wy j~ N(Ll, 0’)
. 2 2 2
— GARCH (L1): 0f; = Yo+ V1i0i—1i + V2, Wi,

— y: Coefficients for GARCH part (y, = constant term)

— wZ_;;: Error term from the previous time step

— o2_,;: Volatility from the previous time step

= (v) Maximum Likelihood Estimation of parameters using a rolling
window

= (vi) Price distributions are simulated by performing the steps (i) to (v) in
reverse order
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Backup

= Quantile Mapping
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Orthogonal Factor Model

Backup

= The Orthogonal Factor Model (Johnson and Wichern (2002))
X=u+LF +c¢

implies a specific covariance structure
r=LL +V¥, ¥ = Cov(e)

which can be used to solve for factor loadings L and common factors F
by spectral decomposition.

= [/, ...,\/)L_pep][\/flep s -\/A_peli']!
X )
Y
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