Financing RE – transitioning to marketbased remuneration?

Rina Bohle Zeller Senior specialist, Global Public Affairs Vestas Wind System A/S

The Voice of Renewables China approves 20.76 GW of subsidy-free solar and wind projects. WINDPOWER

FINANCIAL TIMES Outlook improves but offshore wind is not yet subsidy-free **Bloomberg**

Danish wind nearly subsidy free

Subsidy-Free Green Power May Be Closer Than You Think in Germany

Renew(ables 2.0: Subsidy-free revolution 'Getting this right is a big deal – subsidyfree renewables could hit 60GW in NW **Europe**'

SUBSIDY-FREE SOLAR FUTURE Institute for Energy Economics and Financial Analysis

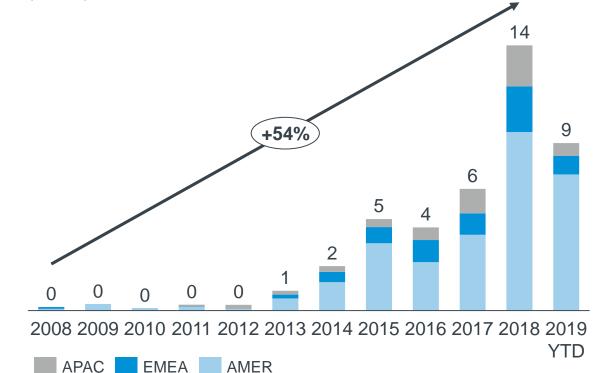
Subsidy-free renewable projects spreading across Europe

AUR⇔RA

"SUBSIDY-FREE RNEWABLES" – NOT (YET) HAPPENING AT SCALE

But renewable interest of corporates is increasing

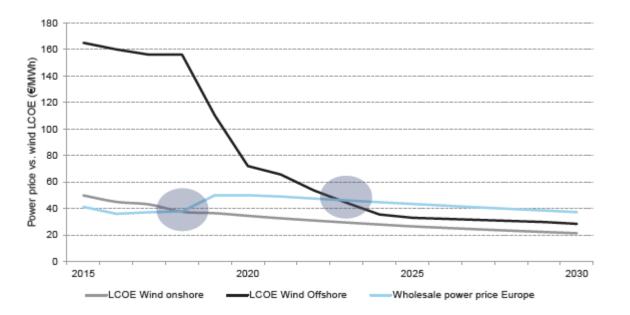
Utility-scale renewable energy investment by remuneration mechanism (in 2018 bn\$)



Wholesale market pricing or other market pricing (e.g. corporate PPAs)

- Contracted pricing based on competitive mechanisms
- Contracted pricing based on administrative mechanisms

Contracted corporate PPAs, by year and region (2008 – 2019 YTD) (in TWh)



Source: Based on data from BNEF, 2H 2019 Corporate Energy Market Outlook, A U.S. story, 08/2019

"SUBSIDY-FREE RNEWABLES" – POORLY UNDERSTOOD

The myth of grid parity is persisting

Levelized cost of electricity (LCOE) and average wholesale prices (2015-2030) (in €/MWh)

Source: Pivosky, A., Wind & Solar Energy. Rivalry Or Collaboration, 03/2019, https://investhandbook.com/wind-solar-energy/

- In most liberalized power markets, wholesale power prices are set by marginal costs and **vary e.g. in function of time, region, power mix** on the grid.
- A theoretical power plant running at full capacity 24/7 all year around would capture the average power price but no power plant, fossil fuel based or renewable, generates at 100% all the time (because of maintenance, curtailment, no wind or no sunshine, etc.).
- Over time, wholesale power prices furthermore tend to decrease in markets with increasing share of variable renewable energy (merit order effect).
- **Grid parity**, often defined as the point when the LCOE falls below average wholesale power prices, **is thus flawed**: average wholesale power prices and LCOE don't compare

FROM LCOE TO MARKET AND SYSTEM VALUE

New metrics are required

LCOE

 Average cost per unit of electricity output Market value and value factor

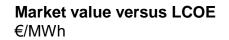
- Average **revenue** per unit of electricity output
- Shows, if divided by the average wholesale power price (value factor), how much of the average price can be captured by a power plant or a power generating technology

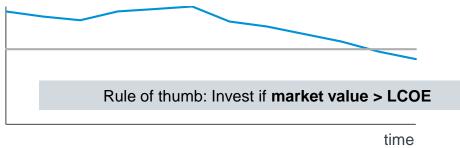
System value

 Interplay of **positive** (e.g. lower carbon emissions, high market value, reduced fuel costs etc.) and **negative effects** (e.g. additional grid infrastructure costs, re-dispatch costs/curtailment etc.) of a power generating technology on the **system**

Prepared by Global Public Affairs (RIBZE)

CHANGING INVESTMENT RATIONALE


From certainty to embracing uncertainty


Fixed payment per MWh versus LCOE	
€/MWh	

Rule of thumb: Invest if fixed pr	rice per MWh > LCOE
-----------------------------------	---------------------

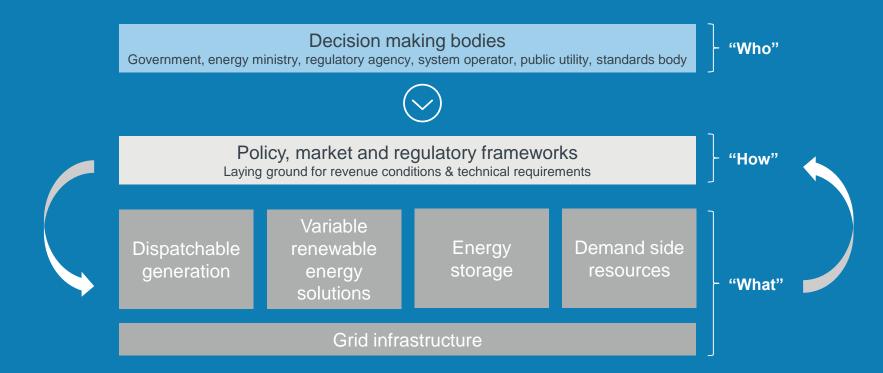
time

- Fixed price per MWh LCOE
- Level of fixed price per MWh determines revenues
- Project profitable if fixed price per kWh above LCOE the lower the LCOE the higher the profitability
- Produce & forget: generator doesn't need to care about fluctuating power prices (and has hence no incentive to produce when power is most needed as he cannot capture higher power prices)

- Market value LCOE
- Under full price risk exposure, the market value captured over the lifetime of the power plant determines the main chunk of revenues of the generator
- Revenues can be topped up by additional revenues streams (and (partially) secured with various instruments)
- A project is profitable when the market value + potential additional revenues over project lifetime exceed the LCOE

WHY SYSTEM VALUE IS AS IMPORTANT AS THE MARKET VALUE FOCUS

Increasing share of variable renewables: self-cannibalization & integration challenges


Countries/regions moving higher levels of integrating variable renewable energy (2017-2030) Annual share of variable renewable energy generation (%)

- Individual market characteristics count
- Increasing flexibility needs impacted by size of power system, its interconnectivity, the degree of flexibility of thermal generation, shape of demand profile etc.
- But all markets will need to evolve to cost-efficiently integrate high shares of variable renewable energy

INCREASING MARKET AND SYSTEM VALUE GOES HAND IN HAND

System-friendly renewable energy solutions need renewable-friendly systems

- Institutions, frameworks and technologies mutually influence each other
- A cost-efficient energy transition requires to address all layers in a consistent way
- Focussing solely on innovating state-of-art renewable energy solutions without adapting frameworks could result in investing in unprofitable solutions

TRANSITIONING TOWARDS COMPETITVE RE ENERGY SYSTEMS

Safe bets and open research areas

No-regret options

- Phase-out of fossil fuel subsidies & greenhouse gas pricing
- Long-term energy planning (RE targets, infrastructure)
- Zoning plans for RE build-out to consider generation profile
- Increase flexibility of existing thermal plants
- Adapting and upgrading grid infrastructure and operations
- Phase-out plan for coal power plants and aim at decarbonization of gas plants
- Move market price settlements as close to generation time as possible & restore price signals
- Remove barriers to alternative revenue stabilization mechanisms (e.g. corporate PPAs)
- Ease access to low cost financing
- Re-design ancillary services products and trading conditions based on the characteristics of RE
- Incentives to speed up economies of scale of demand flexibilization (e.g. storage, power-to-X, demand side management)

More research needed

- Promoting focus shift from cost to value how to spread the word?
- Power price and capture price forecasts how robust is the general upwards trend?
- Carbon prices at what RE penetration do they lose their steering function?
- Legacy plants impact on the market value of new capacity additions?
- Market design which changes are most suited to increase both, market & system value?
- Too cheap to meter (when) will it happen and what alternatives are possible (market design, technologies, business models)?
- Virtual power plants / "islanded" grids could they power a nation more efficiently than grid-heavy systems?

THANK YOU FOR YOUR ATTENTION

Copyright Notice The documents are created by Vestas Wind Systems A/S and contain copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the documents may be reproduced or copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems without the prior written permission of Vestas Wind Systems A/S. The use of these documents by you, or anyone else authorized by you, is prohibited unless specifically permitted by Vestas Wind Systems A/S. You may not alter or remove any trademark, copyright or other notice from the documents. The documents are provided "as is" and Vestas Wind Systems A/S shall not have any responsibility or liability whatsoever for the results of use of the documents by you.