CO₂ prices and system costs - a multi-scenario analysis with an agent-based electricity market model

Martin Klein, Felix Nitsch, Kristina Nienhaus

German Aerospace Center DLR Institute of Engineering Thermodynamics Department Energy Systems Analysis

Strommarkttreffen, 25.10.2019

Use of agent-based models in energy sciences

Agents:

Attributes + Methods (+ Interfaces)

Central: Behaviors / decision rules

Decision rules can be based on any model

- Logic (if..., then...; else...)
- Machine learning algorithm
- System dynamics model
- Dispatch model

AMIRIS architecture

Input

- > RE generation
- Load curves
- Power plants
- > Efficiencies
- Availabilities
- > Fuel costs
- CO₂ prices resp.CO₂ cap

Output

- > DA electricity price
- ➤ Power plant dispatch
- > Storage dispatch
- Market values
- CO₂ emissions resp.CO₂ prices
- > System costs

Advantages of AMIRIS

AMIRIS can incorporate:

- "Non-rational" decision rules
- Policy rules
- Market distortions

AMIRIS allows us to:

- Study emerging effects on power markets
- Yield exactly the same results as optimization model if parametrized the same way

Fast: 10 s/per model year on a standard Laptop with 8 GB RAM

Multi-scenario analysis – exploring the possibility space of power markets

	Low	Mid	High
CO2 price [€/t]	5	50	100
Electricity demand [%/a to 2016]	-1.0	+0.5	+2.0
Fuel prices [% to 2016]	-50	+0	+100
VRE share [%]	40	50	60
Flexibility [GW]	6.2	12.4	18.6
Technological learning [%/a]	1	2	3
Coal phase-out [%]	0	50	100

 $3^7 = 2187$ scenarios

Multi-scenario analysis – exploring the possibility space of power markets

- Calculate 2187 times
- Exemplary evaluation in 2 dimensions

Multi-scenario analysis – exploring the possibility space of power markets CO₂ prices I

Klein, Deissenroth, Schimeczek (2019) - Mapping the challenge of renewable electricity market integration -Multi-scenario analysis with an agent-based electricity market model, IEWT Wien

Multi-scenario analysis – exploring the possibility space of power markets

CO₂ prices II

Klein, Deissenroth, Schimeczek (2019) - Mapping the challenge of renewable electricity market integration -Multi-scenario analysis with an agent-based electricity market model, IEWT Wien

Multi-scenario analysis – exploring the possibility space of power markets

Coal exit variations

Klein, Deissenroth, Schimeczek (2019) - Mapping the challenge of renewable electricity market integration – Multi-scenario analysis with an agent-based electricity market model, *IEWT Wien*

System cost maps – concise way of depicting power market trade-offs

Klein, Deissenroth, Schimeczek (2019) - Mapping the challenge of renewable electricity market integration, IEWT Wien

Discussion and outlook

Scenario exploration using an agent-based energy system model

⇒ Fast model execution allows many scenario evaluations

Analyses reveal multi-dimensional dependencies

CO₂ price turns out to be robust against other parameter configurations regarding reduction of CO₂ emissions

Further research planned on parameter complexity and path dependence of energy systems

- Maps can show power system trade-offs at one glance
- Size and stability of system cost minima

Thank you for your attention!

Martin Klein, Felix Nitsch*, Kristina Nienhaus

German Aerospace Center DLR Institute of Engineering Thermodynamics Department Energy Systems Analysis

*felix.nitsch@dlr.de

Strommarkttreffen, 25.10.2019

Supported by

