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Research questions and contribution

Optimal hydrogen supply chains

Sector coupling as a strategy to
• (i) decarbonize other sectors
• (ii) provide flexibility to the power sector  often under-represented in models

Focus here: hydrogen
• Domestic H2 production and distribution, use for fuel-cell electric vehicles

We determine least-cost hydrogen supply chains
• Considering differences in energy efficiency, investment costs, and storage capabilities
• And considering electricity system interactionsmain contribution

This calls for a numerical model
• We extend the open-source model DIETER and apply it to a future power system with high RES
• www.diw.de/dieter
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Model: extension of DIETER

Optimal hydrogen supply chains

New hydrogen module
• Four channels for distributing H2 to fuel stations

• Decentral electrolysis

• Central + gaseous H2

• Central + liquified H2

• Central + LOHC

Full co-optimization of power sector and hydrogen system
• Model decides on optimal capacities and hourly use
• Given conventional electricity demand and H2 demand for mobility

Applied to 2030 scenario for Germany
• Power sector: brownfield, guided by NEP scenario
• Hydrogen: greenfield, 0, 5%, 10%, 25% of passenger road traffic (0, 9, 18, 45 TWhH2)
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https://commons.wikimedia.org/wiki/File:Dibenzyltoluene_V1.svg
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2 Overview of hydrogen supply chains in the model
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We investigate not all channels in one
model run, but combinations of each
centralized with the decentralized channel



Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
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Low RES share, low H2 demand:
• Not much need for additional flexibility
• Decentralised H2 supply dominant because

high energy efficiency matters most



Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
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High RES share, low H2 demand:
• Higher renewable surplus generation
• Temporal flexibility more beneficial
• LH2 and LOHC allow cheaper longer-term storage



Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
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High H2 demand:
• LH2 or LOHC again most beneficial
• High RES: boil-off prevents seasonal storage with LH2
• GH2: high storage and transportation costs



4 Effects on renewable curtailment (vs. respective baseline)
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 LOHC makes use of renewable electricity that would otherwise be curtailed



4 Effects on system LCOE in 80% RES case (without fixed H2 costs)
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 Renewable integration co-benefit of H2 – but not in decentral case w/o storage
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Summary and conclusion

Optimal hydrogen supply chains

Tradeoff between energy efficiency and temporal flexibility
• Energy-efficient decentral electrolysis optimal for lower RES shares
• Less energy-efficient but more flexible centralized electrolysis better for higher RES shares

Sector coupling with H2

• Can generate substantial co-benefits for integrating wind and solar energy
 This depends on storage capability of supply chain!

Limitations
• Results are driven by renewable surplus generation – no competing sector coupling options
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Thank you for listening

DIW Berlin — Deutsches Institut
für Wirtschaftsforschung e.V.
Mohrenstraße 58, 10117 Berlin
www.diw.de

Contact
Dr. Wolf-Peter Schill
wschill@diw.de | @WPSchill







Data and scenarios

Optimal hydrogen supply chains

Electricity sector
• Brownfield scenario for 2030
• Capacities bounded by current grid

development plan (NEP)
• Maximum investment into thermal 

plants, minimum investments into
renewables and storage

• Time series provided by Open 
Power System Data & ENTSO-E

• Exogenous minimum renewables
share of 65%, 70%, 75%, 80%

Stöckl, Schill, Zerrahn. September 27, 2019

2

Hydrogen infrastructure
• Fully „greenfield“
• H2 demand for mobility: 0, 5%, 10%, 25% of passenger road traffic in Germany (0, 9, 18, 45 TWhH2)
• General assumptions: each fuel station can only offer H2 from one channel

Lignite; 9.3 GW
Hard coal; 9.8 GW

CCGT; 17.6 GW

OCGT; 17.6 GW

Oil; 3.2 GW

Other; 4.1 GW

Run-of-river; …

Biomass; 6.89 GW

Wind onshore; 81.5 GWWind offshore; 
17.0 GW

PV; 91.3 GW

Pumped-hydro storage; 9.5 GW

Lithium-ion batteries; 2.0 GW

https://www.netzentwicklungsplan.de/de/netzentwicklungsplaene/netzentwicklungsplan-2030-2019
https://doi.org/10.1016/j.apenergy.2018.11.097


Background

Some intuition: 
potential drivers of results
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Drivers I: Tradeoff between overall efficiency and flexibility

Optimal hydrogen supply chains

 LOHC dominated by GH2 and LH2 (worse in both dimensions in direct comparison)
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Drivers II: Fixed investment and transportation capacity costs

Optimal hydrogen supply chains

 Only 3% spread between cheapest and most expensive supply chain
 Transportation costs highest for GH2 , low effective load capacity of GH2 trailer
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Drivers III: Storage costs (and losses)

Optimal hydrogen supply chains

• Substantially lower storage costs for LH2 and LOHC
• Expensive high pressure storage at the filling station only buffer storage
• LH2 also suffers from boil-off (about 20%/week)

 Intuition not so clear Analysis with numerical optimization model required
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4 Effects on generation capacity (vs. respective baseline)
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 More PV and (a bit) less storage
 Less capacity needed in high-RES scenario (better utilization)



4 Effects on yearly electricity generation (vs. respective baseline)
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 Storage capability of LOHC and LH2 allows additional integration of wind power 
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