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Research questions and contribution

Sector coupling as a strategy to
* (i) decarbonize other sectors

* (ii) provide flexibility to the power sector - often under-represented in models

Focus here: hydrogen

e Domestic H, production and distribution, use for fuel-cell electric vehicles

We determine least-cost hydrogen supply chains
* Considering differences in energy efficiency, investment costs, and storage capabilities

* And considering electricity system interactions = main contribution

This calls for a numerical model
* We extend the open-source model DIETER and apply it to a future power system with high RES

« www.diw.de/dieter
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Model: extension of DIETER

New hydrogen module

e Four channels for distributing H, to fuel stations

* Decentral electrolysis
e Central + gaseous H,

* Central + liquified H,
* Central + LOHC @—C“{}/"C“T‘@

Full co-optimization of power sector and hydrogen system
* Model decides on optimal capacities and hourly use

* Given conventional electricity demand and H, demand for mobility

Applied to 2030 scenario for Germany
* Power sector: brownfield, guided by NEP scenario

e Hydrogen: greenfield, 0, 5%, 10%, 25% of passenger road traffic (0, 9, 18, 45 TWh,,,)

https://commons.wikimedia.org/wiki/File:Dibenzyltoluene V1.svqg
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Overview of hydrogen supply chains in the model
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Results: hydrogen supply chains and H, supply costs
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Results: hydrogen supply chains and H, supply costs
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Effects on renewable curtailment (vs. respective baseline)
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- LOHC makes use of renewable electricity that would otherwise be curtailed
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Effects on system LCOE in 80% RES case (without fixed H, costs)
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—> Renewable integration co-benefit of H, — but not in decentral case w/o storage
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Summary and conclusion

Tradeoff between energy efficiency and temporal flexibility
* Energy-efficient decentral electrolysis optimal for lower RES shares

* Less energy-efficient but more flexible centralized electrolysis better for higher RES shares

Sector coupling with H,

* Can generate substantial co-benefits for integrating wind and solar energy
—> This depends on storage capability of supply chain!

Limitations

* Results are driven by renewable surplus generation — no competing sector coupling options

Optimal hydrogen supply chains NZTITI BERLIN
ble
Stockl, Schill, Zerrahn. September 27, 2019
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Data and scenarios

Electricity sector

Brownfield scenario for 2030
Capacities bounded by current grid
development plan (NEP)

Maximum investment into thermal
plants, minimum investments into
renewables and storage

Time series provided by Open
Power System Data & ENTSO-E
Exogenous minimum renewables
share of 65%, 70%, 75%, 80%

Hydrogen infrastructure

Fully , greenfield”

Lithium-ion batteries; 2.0 GW

Pumped-hydro storage; 9.5 GW

PV;91.3 GW

Wind offshore;
17.0 GW

Lignite; 9.3 GW
Hard coal; 9.8 GW

CCGT,; 17.6 GW

OCGT; 17.6 GW

Oil; 3.2 GW
Other; 4.1 GW

Run-of-river;...

Biomass; 6.89 GW

Wind onshore; 81.5 GW

* H, demand for mobility: 0, 5%, 10%, 25% of passenger road traffic in Germany (0, 9, 18, 45 TWh,,,)

* General assumptions: each fuel station can only offer H, from one channel
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https://www.netzentwicklungsplan.de/de/netzentwicklungsplaene/netzentwicklungsplan-2030-2019
https://doi.org/10.1016/j.apenergy.2018.11.097

Some intuition:
potential drivers of results



Drivers I: Tradeoff between overall efficiency and flexibility
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Drivers II: Fixed investment and transportation capacity costs

LH, LOHC

—> Transportation costs highest for GH, , low effective load capacity of GH, trailer
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Drivers III: Storage costs (and losses)
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e Substantially lower storage costs for LH, and LOHC
* Expensive high pressure storage at the filling station = only buffer storage

* LH, also suffers from boil-off (about 20%/week)

-> Intuition not so clear = Analysis with numerical optimization model required
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Effects on generation capacity (vs. respective baseline)
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- More PV and (a bit) less storage
— Less capacity needed in high-RES scenario (better utilization)
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Effects on yearly electricity generation (vs. respective baseline)
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—> Storage capability of LOHC and LH, allows additional integration of wind power
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