

August 2019

Designing retail electricity tariffs smart

Strommarkttreffen

Christos Kolokathis Associate ckolokathis@raponline.org Andreas Jahn Senior Associate ajahn@raponline.org

1 The networks we already have

Trigger for our analysis

- Often hear grids will explode with EV adoption and massive investments needed in grids
- But what about the use of existing distribution networks?
- Making best use of networks → minimise costs

Utilisation rate for networks

- Similar to load factor for power plants
- Maximum capacity unknown maximum flow used as a proxy – conservative assumption
 - Rates calculated an overestimation of real rates

 Very important: Regulators do not oblige DSOs to monitor and report this at the moment!

Significant spare capacity even on the peakiest of days

Why smart charging is crucial

Source: own compilation based on Westnetz, peak day 2017; red/green curves illustrative

2 Smart tariff design - principles

Smart tariff design can't wait

Important to start implementing appropriate network tariffs where they're not already in place

- Regulatory cycles last for 4-5 years
- Foundation for retailers and aggregators to introduce smart tariff products
- Educate consumers and gain experience

What can we achieve with smart tariff design?

- Maximise utilisation of existing grid and minimise future investment
- Empower consumers to make good decisions
- Ensure that everyone pays their fair share

High-level principles for smart network tariffs

- 1. A consumer should be able to connect to the grid for no more than the cost of connecting to the grid
- 2. Consumers should pay for grid services in proportion to how much and when they use the grid
- 3. Consumers who generate electricity should cover their fair share of grid costs

3 Smart tariff design - examples

Smart tariff design

- Recognises how much, when, and where consumers use the grid
- Vary from time-of-use to real-time pricing

Smart tariff design can deliver demand response, downwards and upwards

Tempo tariff in France

More dynamic tariffs

Electric vehicle owners' charging habits on dynamic tariff

Source: Octopus Energy. (2018). Agile Octopus: A consumer-led shift to a low carbon future.

TOU-based network tariffs

Source: Based on Radius. Tariffer og netabonnement [Tariffs and network subscriptions].

Source: Denmark (Radius), TOU network tariff for households (winter season)

4 Network charges - State of play in Europe

Recent trends are troubling

- Many MS are shifting toward fixed charges:
 - Germany: increased much over last years
 - Spain: doubled within two years
 - Netherlands: only fixed charges since 2009
- Policy-driven changes

Problem: the fixed fees in network charges

	Store 1	
mall industrial share		
f fixed costs in the listribution tariff		
>80%		2 martine 2
51% - 80%	}	
30% - 50%		La ser se
< 30%	$\mathcal{T} >$	
	28	1 7 % 1

111 -

5 Fixed tariffs impede the energy transition

Fixed fees take the power out of consumers' hands

Fixed fees do <u>not</u> promote efficiency or equity

- Consumers who use grid efficiently pay the same as those that who do not
- Consumers who use the grid during hours of low demand pay the same as those who use the grid at peak system demand

Fixed fees shift costs from highto low-usage consumers

Low-usage consumers pay disproportionately more

Source: German distribution system operator, network fees in 2018

Germany: Historical development of network fees for households

Network bill for low-usage consumers almost doubled

Source: Distribution network operator EWE

What about other industries?

We pay for other "grids" in volumetric prices

Network companies can easily recover costs without fixed charges

- Ensure financial stability through economically efficient prices and appropriate regulatory frameworks
 - These include revenue regulation and decoupling, and performance-based regulation
 - Break the link between sales and profits

Recommendations for different consumer classes

- Residential consumers: volumetric charges as default; ToU tariffs optional
- New, large, controllable loads (e.g., EVs), small industrial consumers: ToU tariffs as default, CPP if smart technology is in place
- ⇒ Important to link tariff choice with its likely impact

Conclusions

- Tariff design is an integral part of public policy goals that should support, and not impede, the energy transition
- Smart tariffs empower consumers to take right action
- Help to optimize use of existing network assets and minimise future investments

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Christos Kolokathis Associate ckolokathis@raponline.org

Andreas Jahn Senior Associate ajahn@raponline.org

Resources from RAP

- Cleaner, Smarter, Cheaper: Network tariff design for a smart future
- Designing Tariffs for Distributed Generation Customers
- Smart Rate Design for a Smart Future
- Designing Distributed Generation Tariffs Well
- Rate Design Where Advanced Metering Infrastructure Has Not Been Fully Deployed
- Revenue Regulation and Decoupling: A Guide to Theory and <u>Application</u>
- Time-Varying and Dynamic Rate Design

Why are network charges important?

Network charges constitute a quarter of the bill

Source: European Commission (2016), 2015 Energy prices and costs in Europe.

Structure of network tariffs

- Fixed component: usually defined by number of consumers, size of connection with grid or peak demand of consumer
- Volumetric component: reflects how much the consumer used