INTERPLAY OF A NETWORK OF HYDROGEN REFUELLING STATIONS (HRS) FOR HEAVY-DUTY VEHICLES (HDV) AND THE POWER SYSTEM IN GERMANY IN 2050

Philipp Kluschke, Fabian Neumann

Fraunhofer ISI, Karlsruhe Institut für Technologie (AIA)

Strommarkttreffen, Berlin (5. Juli 2019)

Focus: Reducing GHG emissions from German road freight transport

Power System Modelling

Role of HDV in the Transport Sector

- Of today's 170 Mt/a CO₂ emissions in transport, 40 Mt are caused by heavy commercial vehicles (>3.5t)
- Growth of road freight transport volume
- Limited relocation potential on rail

Take-Away Message

Especially heavy trucks (40t) cause disproportionately high emissions due to typically high mileages and vehicle weight.

Previous Work: A Viable Network of Hydrogen Refuelling Stations

HRS locations were determined using a Node-Capacitated Fuel Refuelling Location Model (NC-FRLM) that minimizes the number of stations to cover the hydrogen demand.

Inputs

Motivation

- HDV traffic density per section in the German highway network from a traffic census (BASt)
- Forecast of HDV traffic volume until 2050 (IEA)
- Driving profiles (origin-destination) for NUTS3 regions
- Technical parameters (e.g. range and consumption rates)
- Assuming 100% market diffusion of FC-HDV
- Discrete set of station sizes and sites (7.5t, 15t, 30t)

Outputs

Minimum viable set of HRS locations and sizes to serve HDV hydrogen demand with onsite electrolysis.

Results (2050)

- HRS network for FC-HDV-based road freight traffic consists of 142 stations with maximum capacity of 30t/d.
- Number of required HRS depends on maximum capacity.

Methodology: Open Energy System Modelling with PyPSA-Eur

- Grid data based on GridKit extraction of ENTSO-E interactive map
- powerplantmatching tool combines open databases using matching algorithm DUKE
- Renewable energy time series from open atlite, based on Aarhus University REatlas
- Geographic potentials for RE from land use databases processed with glaes
- Optional: time series aggregation with tsam
- Basic validation performed in Hörsch et al 'PyPSA-Eur: An Open Optimisation Model of the European Transmission System'

Methodology: Open Energy System Modelling with PyPSA-Eur

Find the long-term cost-optimal energy system, including investments and short-term costs:

$$\operatorname{Minimise} \begin{pmatrix} \mathbf{Yearly} \\ \mathbf{system \ costs} \end{pmatrix} = \sum_{n} \begin{pmatrix} \mathbf{Annualised} \\ \mathbf{capital \ costs} \end{pmatrix} + \sum_{n,t} \begin{pmatrix} \mathbf{Marginal} \\ \mathbf{costs} \end{pmatrix}$$

Model Scope

Motivation

- German extract of European model
- Temporal resolution of **2 hours** (4380 snapshots)
- Spatial resolution of **333 nodes**
- \blacksquare max. **30 Mt/a** CO₂ emissions

Experimental Setup

- greenfield optimisation
- power plants are extendable
- excluding nuclear and coal power plants
- transmission grid is extendable
- HVDC links route options from TYNDP
- hydrogen and battery storage options

The German Power System without HRS (30 Mt/a CO_2 -Cap)

76.98 EUR/MWh

Two HRS Dimensioning Scenarios for Power System Integration

Scenario:

System-Ignorant Investment in HRS

- locally optimal station size
- minimise capital expenditures (CAPEX)

Scenario:

System-Aware Investment in HRS

- globally optimal station size
- serve to minimise total system costs

In both scenarios...

- local hydrogen demand must be met,
- no reconversion of hydrogen to power is allowed at HRS,
- maximum hydrogen storage capacity is 30 tonnes (1000 MWh),
- connection cost of electrolyser is proportional to distance to nearest (U-)HV-substation,
- \blacksquare CO₂-emissions for electricity sector plus refuelling infrastructure must not exceed 30 Mt/a.

How Does Total System Cost Change with More Flexible HRS?

System-Ignorant HRS

Average: 82.25 EUR/MWh

System-Aware HRS

Average: 81.43 EUR/MWh

Let's look at this from another perspective...

System-Ignorant HRS

Euro/kg

System-Aware HRS

Motivation Network of Hydrogen Refuelling Stations (HRS) Power

Levelised Cost of Hydrogen – A North-South Divide

In a Nutshell...

	Without HRS	System-Ignorant	System-Aware
Annual Electricity Demand [TWh]	463	537	537
– Hydrogen Refuelling	_	74	74
LCOH [EUR/kg]	_	6.66	5.97
- CAPEX Share [%]	_	9.6	20.0
Electrolyser Capacity Factors [-]	_	0.61	0.33
Total System Cost [EUR/MWh]	77.0	82.3	81.4
Total System Cost [bn EUR]	38.5	48.3	47.2
– HRS Electrolysis	_	1.0	1.8
– HRS Storage	_	0.2	0.3
– Other Storage (Battery, Hydro & Hydrogen)	6.0	8.0	6.4
Generation Fleet [GW]	304	381	383
HRS Electrolysers [GW]	_	13.9	25.6
HRS Hydrogen Storage [GWh]	_	93	142

What are the Take-Away Messages?

- 1 A node-capacity limit has a major impact on the number of refuelling stations required.
- Levelised Cost of Hydrogen (LCOH) vary regionally depending on local cost of electricity production.
- System-aware dimensioning of hydrogen refuelling infrastructure reduces LCOH (0.7 EUR/kg_{H_2}) as well as total system cost (1 Billion EUR/a).
- Co-optimization of multiple energy sectors is important for planning to exploit synergies and cost reduction potentials.
- 5 Nodal pricing can forward useful information about total system cost.

Contact Details

Energy Technology and Energy Systems
Fraunhofer Institute for Systems and Innovation Research
Breslauer Straße 48
76139 Karlsruhe
+49 721 6809 235
philipp.kluschke@isi.fraunhofer.de

Fabian Neumann
Energy System Modelling

Institute for Automation and Applied Informatics Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen +49 721 608 25707 fabian neumann@kit.edu

