Country Wide Infrastructure for Zero Emission Transportation

05.07.2019 | SIMONAS CERNIAUSKAS, THOMAS GRUBE, MARTIN ROBINIUS, DETLEF STOLTEN

Strommarkttreffen
NOW GmbH, Berlin

IEK-3: Institute of Electrochemical Process Engineering
Research Topics within the Techno-Economic Systems Analysis Group

Dr. Martin Robinius
Head Systems Analysis Group

Dr. Heidi Heinrichs
Methodical science for energy system models

Patrick Kuckertz
Software Engineering

Markus Reuß
Infrastructure analysis, Germany, Japan

Dr. Thomas Grube
Transport Team

Simonas Cerniauskas
Market introduction, Germany

Yuan Wang
CCS in Industry, Germany, China

Dr. Li Zhao
Carbon Capture and Storage (CCS)

Power Generation
- Konstantinos Syranidis
 Power flow model, conventional power plants, Europe

Storage and Cross-Linked Infrastructures
- Lara Welder
 Overall energy systems model – Germany
- Philipp Heuser
 Selected paths worldwide
- Dilara Caglayan
 Infrastructure Analysis – Europe

Industry
- Markus Reüß
 Infrastructure analysis, Germany, Japan
- Dr. Peter Markewitz
 Stationary Energy Systems Team
- Peter Lopian
 Overall energy systems model – Germany

Transport
- Dr. Thomas Grube
 Transport Team
- Simonas Cerniauskas
 Market introduction, Germany

Residential - Prosumption
- Jochen Linßen
 Sector Coupling Team
- Dr. Peter Stenzel
 Residential & Storage solutions

Leander Kotzur
Residential, Germany
Methodology

Hydrogen Demand Potential

Technology Diffusion Scenarios

Demand Localization

Introduction phase

2020 2035 2050

Penetration rate %

Supply Chain Development

Hydrogen Supply Chain Analysis

Electrolysis

Mobility:
FCEVs, Bus, Train, LDV, HDV

Industry:
Forklifts, Methanol, Ammonia, Refinery

GH₂ tank GH₂ trailer Fuel station

LH₂ tank LH₂ trailer

GH₂ cavern GH₂ pipeline

FCEV: Fuel cell electrical vehicle, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle,
GH₂: Gaseous Hydrogen, LH₂: Liquid Hydrogen
Methodology: Criteria for Hydrogen Demand Distribution at the County Level

<table>
<thead>
<tr>
<th>Local bus</th>
<th>Regional train</th>
<th>Passenger car</th>
<th>LDV/HDV</th>
<th>MHV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Diesel train lines</td>
<td>Population</td>
<td>Loaded road freight mass</td>
<td>Logistic space</td>
</tr>
<tr>
<td>Federal support</td>
<td>Federal support</td>
<td>Population density</td>
<td>Unloaded road freight mass</td>
<td>Freight intensity</td>
</tr>
<tr>
<td>Income</td>
<td>Fuel stations</td>
<td>Income</td>
<td>Fleet size</td>
<td></td>
</tr>
</tbody>
</table>

- HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3)
Methodology: Hydrogen Supply Chain Analysis

- General model to calculate supply chain costs based on source-sink distance and demand
- Geo-spatial analysis of relevant infrastructure constraints
- Investigation of supply pathways for different supply and demand structures

GH\textsubscript{2}: Gaseous hydrogen
LH\textsubscript{2}: Liquid hydrogen
LOHC: Liquid organic hydrogen carrier
HDV: Heavy duty vehicle
LDV: Light duty vehicle
MHV: Material handling vehicle (forklift class 1-3)

What are the impacts on different market segments?
Market Choice: Idealized Mix of Demand Sectors

- **Assumptions for introduction phase:** LCOE = 6 ct/kWh, CAPEX$_{PEM}$ = 1500 €/kW, $\eta_{LHV,2018}$ = 67%, Storage = 60 days

- **Approach:**
 - Introduction phase: up to 400 kt p.a.
 - Each technology can be considered either with a demand of 0 or 50 kt p.a.
 - Evaluate all 2^8 combinations
 - Calculate the gap to the conventional system for a given market combination

Choice of demand market has a significant impact on system cost

<table>
<thead>
<tr>
<th>Fuel</th>
<th>pre-Tax</th>
<th>after-Tax*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>8 ct/kWh</td>
<td>15,2 ct/kWh</td>
</tr>
</tbody>
</table>

* Including energy related taxes (mineral oil tax), excluding value-added tax
Market Choice: Single Markets in the Introduction Phase (50 kt p.a.)

- Assumptions for **introduction phase**: LCOE = 6 ct/kWh, CAPEX_{PEM} = 1500 €/kW, η_{LHV,2018} = 67%, Storage = 60 days

- **Assumption**: commercial fleets with access to commercial HRS\(^1\) do not fuel in public HRS

- **Public HRS** introduction strategy requires significantly higher upfront investment per vehicle

- Transportation sectors with **predictable demand and MHV** enable the cost gap to conventional fuels to be significantly reduced

\(^1\)28% of passenger cars and 56% HDV/LDV \[^1\]

*Including energy related taxes (mineral oil tax), excluding value-added tax

HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3)

HRS: Hydrogen Refueling Station HSC: Hydrogen Supply Chain, HSC: Hydrogen Supply Chain

\[^1\]28% of passenger cars and 56% HDV/LDV [1]
What is the impact of market growth?
Market Penetration Scenarios

- **Scenario data** base for key technologies and application fields in the introductory phase
- Formulation of **exploratory** scenarios to analyze how hydrogen infrastructure costs might develop
- Formulation of **high, medium and low diffusion scenarios** for each hydrogen application depending on level of:
 - political support
 - economic incentives
 - technological progress
 - technology acceptance
 - willingness to pay for emission-free applications

Regional train: non-electrified lines only, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3), Chemical industry: Ammonia, Methanol, Petrochemical industry
Scenario and Input Parameters

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WACC</td>
<td>8</td>
<td>%</td>
</tr>
<tr>
<td>LCOE</td>
<td>6</td>
<td>ct/kWh</td>
</tr>
<tr>
<td>Natural gas cost</td>
<td>4</td>
<td>ct/kWh</td>
</tr>
<tr>
<td>Imported H₂ cost</td>
<td>11.7 [1]</td>
<td>ct/kWh</td>
</tr>
<tr>
<td>Storage time</td>
<td>60 [2,3]</td>
<td>days</td>
</tr>
<tr>
<td>Max. electrolytic H₂ production</td>
<td>3160 [2]</td>
<td>kt/a</td>
</tr>
<tr>
<td>Electrolysis efficiency (2050)</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>Electrolysis investment (2023)</td>
<td>1500 [4]</td>
<td>€/kW</td>
</tr>
<tr>
<td>Electrolysis learning rate</td>
<td>20 [5]</td>
<td>%</td>
</tr>
<tr>
<td>Max. SMR H₂ production</td>
<td>96* [6]</td>
<td>kt/a</td>
</tr>
<tr>
<td>SMR efficiency</td>
<td>80 [7]</td>
<td>%</td>
</tr>
<tr>
<td>Fuel station learning rate</td>
<td>6 [8]</td>
<td>%</td>
</tr>
</tbody>
</table>

Regional train: non-electrified lines only, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3), Chemical industry: Ammonia, Methanol, Petrochemical industry

Medium hydrogen demand scenario

- **Dominating technology:**
 - 2023 - 2030: **LDVs & HDVs, MHVs, public transport**
 - After 2030: **Passenger cars, chemical industry**

5% of todays industrial hydrogen output
Infrastructure Cost Development: Medium Scenario

- Very long distribution pipeline network incurs a high cost to the system
- Even at low total hydrogen demand (300 kt p.a.), hydrogen is cost-competitive with conventional fuels

Hydrogen is cost-competitive with conventional fuels (after-tax) by 2024-2029

* Benchmark = \((\text{gasoline cost } (8 \frac{ct}{kWh}) + \text{mineral oil tax } (7.2 \frac{ct}{kWh})) \times \frac{\eta_{\text{Fuel Cell}}}{\eta_{\text{ICE}}}\)

**Excluding value-added tax

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering
Summary and Conclusion
Summary and Conclusion

➢ High demand potential during the introduction phase for hydrogen applications with requirements for high utilization, fast fueling, long range and high power capacity:
 ▪ Regional non-electrified trains
 ▪ Local busses
 ▪ Forklifts of the class 1 to 3
 ▪ Heavy and light duty vehicles

➢ Focus on non-public fueling infrastructure significantly reduces the upfront costs of fuel stations and distribution

➢ Choice of demand market segment has a significant impact on the system cost

➢ Hydrogen is cost-competitive with conventional fuels (after-tax) by 2024-2029

Cost-competitive countrywide hydrogen infrastructures can be developed within 5-10 years of investment
Thank you for your attention!
Backup
Methodology: Criteria for Hydrogen Demand Distribution at the HRS Level

<table>
<thead>
<tr>
<th>Early phase</th>
<th>Sizes</th>
<th>Method</th>
<th>Max.</th>
<th>Linearly based on demand</th>
<th>Linearly among existing stations</th>
<th>Minimize investment</th>
<th>Based on commercial area</th>
<th>Minimize investment</th>
<th>Based on the commercial area</th>
<th>Based on the logistic area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus HRS</td>
<td>Train HRS</td>
<td>Public HRS: 700 bar</td>
<td>Non-Public HRS: 700 bar</td>
<td>Public HRS: 350 bar</td>
<td>Non-Public HRS: 350 bar</td>
<td>MHV HRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>170</td>
<td>9800</td>
<td>7148</td>
<td>8000</td>
<td>2345</td>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictable demand</td>
<td>Predictable demand</td>
<td>S, M, L, XL, XXL*</td>
<td>Predictable demand</td>
<td>S, M, L, XL, XXL*</td>
<td>Predictable demand</td>
<td>Predictable demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean fleet for regional adoption: 25</td>
<td>Mean fleet for regional adoption: 5</td>
<td>Only S until 10 % of FS**</td>
<td>Mean fleet for regional adoption: 50</td>
<td>Only S until 10 % of FS**</td>
<td>Mean fleet for regional adoption: 20</td>
<td>Mean fleet for regional adoption: 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* S-size: 212 kg/d, M-size: 420 kg/d, L: 1000 kg/d, XL: 1500 kg/d, XXL: 3000 kg/d
** Widely adopted view in the literature regarding the percentage of existing fuel stations for AFVs to reach sufficient infrastructure coverage: 5 - 20% [1-4]