

Offen im Denken

Hawkes processes for market order arrivals on the German intraday power market and their application in optimal market maker pricing

Strommarkttreffen Juni 2019

Graf von Luckner, Kiesel | Chair for Energy Trading and Finance | University of Duisburg-Essen

Table of contents

Motivation

Optimization problem

Solution

Backtest Empirics Results

Conclusion

- We consider a market maker (MM) operating on the intraday market for power deliveries in Germany.
- We study the problem of how she can optimally price her buy and sell limit orders (LO).
- Dependence on her current inventory as well as market characteristics and state, e.g.
 - Self-excitement in market order (MO) arrivals, ...
 - Bid-ask spreads well above tick size

Value function

We consider the following value function for the MM:

$$V(t, X, q, S, H, \lambda) = \sup_{(\delta_{SL}(u), \delta_{BL}(u))_{t \leq u \leq T} \in \mathcal{A}} \mathbb{E}\left[X(T) + q(T)(S(T) - \text{sign}(q(T))H(T) - \alpha q(T)) - \phi \int_{t}^{T} q(u)^{2} du \mid \mathcal{F}(t)\right],$$

$$(1)$$

where

$$\operatorname{sign}(q(t)) \coloneqq \begin{cases} 1 & \text{if } q(t) > 0 \\ 0 & \text{if } q(t) = 0 \\ -1 & \text{if } q(t) < 0. \end{cases}$$

and A is the set of admissible controls.

Different ϕ, α

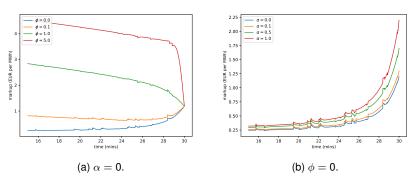


Figure: Optimal markup over time for different running and terminal inventory penalties. q = 0 MWh, h = 0.5 EUR per MWh.

Different q, ϕ

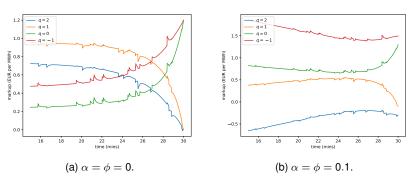


Figure: Optimal markup over time for different inventory levels and inventory penalties. $h=0.5\,\mathrm{EUR}$ per MWh.

Different h

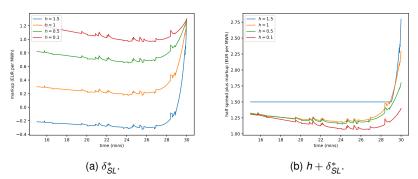


Figure: Optimal markup and half spread plus optimal markup over time for different half spreads. q=0 MWh, $\phi=\alpha=0.1$.

Arrivals

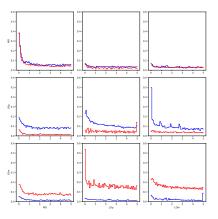


Figure: Blue: average number of sell MOs (first row), buy LOs placed into the bid-ask spread (second row) and buy LOs canceled from the first level of the order book (third row) in bins of 5 seconds over 5 minutes after the arrival of a sell MO (first column), a buy LO being placed into the bid-ask spread (second column) and a buy LO being canceled from the first level of the order book (third column).

Test design

- Contracts with delivery in peak hours of 05/2015 and 06/2015 are considered.
- 2 hours of trading ending 5 mins before gate closure.
- Point process param. are estimated for each peak hour with data from 04/2015 and averaged b/w buy/sell side.
- Expected impacts are estimated for all peak hours with data from 04/2015 and averaged b/w buy/sell side.
- Fill probability param. are estimated for all peak hours with data from 04/2015 and averaged b/w buy/sell side.
- One unit of inventory is 0.1 MW.
- We assume that if the worst price executed by a MO is the same or worse than the price of the MM's LO on the relevant market side, the MM's LO is executed.

Result example

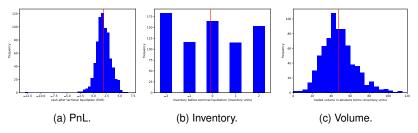


Figure: Distributions resulting from backtesting the strategy. $\phi = 1, \alpha = 0$.

Results

PnL (EUR)	Inventory (MWh)	Volume (MWh)		
1.273	-0.004	7.190		

(a) Naive.

	PnL (EUR)			Inventory (MWh)			Volume (MWh)		
$\phi \setminus \alpha$	0e+00	1e-01	1e+00	0e+00	1e-01	1e+00	0e+00	1e-01	1e+00
0e+00 1e+00 1e+01	1.814 1.825 1.877	1.815 1.826 1.877	1.815 1.825 1.877	-0.006 -0.007 -0.005	$-0.006 \\ -0.007 \\ -0.005$	$-0.006 \\ -0.007 \\ -0.005$	5.176 5.057 4.541	5.176 5.057 4.541	5.174 5.057 4.542

(b) NHPP.

	PnL (EUR)			Inventory (MWh)			Volume (MWh)		
$\phi \setminus \alpha$	0e+00	1e-01	1e+00	0e+00	1e-01	1e+00	0e+00	1e-01	1e+00
0e+00	1.876	1.876	1.878	-0.009	-0.009	-0.009	4.810	4.811	4.811
1e+00 1e+01	1.880 1.879	1.881 1.879	1.881 1.878	$-0.008 \\ -0.007$	-0.009 -0.007	-0.009 -0.006	4.743 4.364	4.743 4.364	4.744 4.364

(c) Hawkes.

Table: Mean of PnL, inventory and traded volume at the end of trading.

Performance indicators

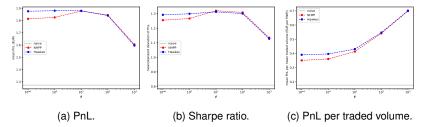


Figure: Performance indicators as a function of ϕ for model with excitement (blue) and without (red). $\alpha=0$.

- $ightharpoonup \phi$ has a substantial impact on markups/downs.
- Optimal markups/downs vary substantially with current half spread.
- Excitement may be observed empirically in events which (potentially) have an impact on mid price and half spread.
- Backtest: Mean PnL is positive. Including Hawkes increases mean PnL and decreases mean traded volume.