### Imperial College London

# Revenues and potential profitability of electricity storage

Oliver Schmidt & Iain Staffell

10 May 2019 | Strommarkttreffen Berlin, Germany



# Wide spread of revenue potential for electricity storage in common applications

#### **Data Review**



### Revenue potential varies with application requirements

### Revenue vs requirements



# Reward for power capacity increases with frequency and discharge duration

### Revenue potential – power capacity



# Reward for discharged energy increases with reducing cycle frequency

### **Revenue potential – discharged energy**



## Recap: Lifetime cost for 9 technologies in various applications up to 2050

Levelised cost of storage (LCOS) & Annuitised capacity cost (ACC)

$$LCOS\left[\frac{\$}{MWh}\right] = \frac{Investment\ cost\ +\ Operating\ cost\ +\ Disposal\ cost}{Electricity\ discharged}$$

$$ACC \left[ \frac{\$}{kW_{year}} \right] = \frac{Investment\ cost\ +\ Operating\ cost\ +\ Disposal\ cost}{Power\ capacity}$$

Discounted cost of a MWh discharged or for providing a kW power per year.

## Comparing revenue potential (energy) and levelised cost of storage suggests...

Revenue vs cost (US\$/MWh)

Discount rate: 8%

Electricity price: 50 \$/MWh

#### **Revenue potential (energy)**

#### Levelised cost of storage



## ...potential business cases for applications with>300 cycles and >1 hour discharge

**Profitability in US\$/MWh** 

Discount rate: 8%

Electricity price: 50 \$/MWh



## Comparing revenue potential (power) and annuitised capacity cost reveals...

Revenue vs cost (US\$/kW<sub>year</sub>)

Discount rate: 8%

Electricity price: 50 \$/MWh



### ... two application categories for potential business cases

**Profitability in US\$/kW**<sub>year</sub>

Discount rate: 8%

Electricity price: 50 \$/MWh





### Thank you for your attention!

#### Oliver Schmidt | PhD Researcher in Energy Storage

**Grantham Institute - Climate Change and the Environment** 

Imperial College London, Exhibition Road, London SW7 2AZ

Tel: +44 (0) 7934548736

Email: o.schmidt15@imperial.ac.uk

Websites: www.storage-lab.com, www.EnergyStorage.ninja

## Test your own assumptions on www.EnergyStorage.ninja

#### **Online Tool**



## All cost and performance parameters relevant during technology life considered

### **Technology input parameters**

|                          |          |                  | Pumped<br>hydro | Compressed air  | Flywheel     | Lithium-<br>ion | Sodium-<br>sulphur | Lead-<br>acid   | Vanadium redox-flow | Hydrogen      | Super-<br>capacitor |
|--------------------------|----------|------------------|-----------------|-----------------|--------------|-----------------|--------------------|-----------------|---------------------|---------------|---------------------|
| Investment cost - Power  | \$/kW    | CP               | 1129 (45%)      | 871 (35%)       | 641 (17%)    | 678 (17%)       | 657 (27%)          | 675 (23%)       | 829 (21%)           | 5417 (48%)    | 296 (31%)           |
| Investment cost - Energy | \$/kWh   | CE               | 60 (80%)        | 39 (58%)        | 5399 (67%)   | 802 (24%)       | 738 (12%)          | 471 (38%)       | 760 (17%)           | 31 (60%)      | 13560 (19%)         |
| Operation cost - Power   | \$/kW-xr | СР-ОМ            | 8 (26%)         | 4 (23%)         | 7 (8%)       | 10 (35%)        | 11 (50%)           | 8 (31%)         | 12 (52%)            | 46 (30%)      | 0 (0%)              |
| Operation cost - Energy  | \$/MWh   | СЕ-ОМ            | 1 (60%)         | 4 (60%)         | 2 (60%)      | 3 (60%)         | 3 (60%)            | 1 (60%)         | 1 (60%)             | 0 (60%)       | 0 (60%)             |
| Replacement cost         | \$/kW    | C <sub>P-r</sub> | 116 (5%)        | 93 (5%)         | 199 (44%)    | 0 (0%)          | 0 (0%)             | 0 (0%)          | 0 (0%)              | 1637 (48%)    | 0 (0%)              |
| Replacement interval     | cycles   | Cyc              | 7300            | 1460            | 22500        | 3250            | 4098               | 1225            | 8272                | 6388          | 69320               |
| End-of-life cost         | %        | FEOL             | 0%              | 0%              | 0%           | 0%              | 0%                 | 0%              | 0%                  | 0%            | 0%                  |
| Discount rate            | %        | DR               | 8%              | 8%              | 8%           | 8%              | 8%                 | 8%              | 8%                  | 8%            | 8%                  |
| Round-trip efficiency    | %        | art              | 78% (9%)        | 44% (16%)       | 88% (3%)     | 86% (7%)        | 81% (6%)           | 84% (0%)        | 73% (9%)            | 40% (13%)     | 91% (6%)            |
| Self-discharge           | %/day    | Aseltidle        | 0%              | 0%              | 480%         | 0%              | 20%                | 0%              | 0%                  | 1%            | 30%                 |
| Lifetime (100% DoD)      | cycles   | Cyclife          | 33250 (43%)     | 16250 (20%)     | 143402 (30%) | 3250 (38%)      | 4098 (29%)         | 1225 (35%)      | 8272 (13%)          | 20000 (0%)    | 300000 (67%)        |
| Shelf life               | years    | Ishelt           | 55 (9%)         | 30 (33%)        | 18 (14%)     | 13 (38%)        | 14 (20%)           | 10 (50%)        | 13 (20%)            | 18 (14%)      | 14 (33%)            |
| Response time            | seconds  |                  | >10             | >10             | <10          | <10             | <10                | <10             | <10                 | <10           | <10                 |
| Time degradation         | %/year   | Idea             | 0.4%            | 0.7%            | 1.3%         | 1.7%            | 1.6%               | 2.2%            | 1.7%                | 1.3%          | 1.6%                |
| Cycle degradation        | %/cycle  | Сусдед           | 0.0007%         | 0.0014%         | 0.0002%      | 0.0069%         | 0.0054%            | 0.0182%         | 0.0027%             | 0.0011%       | 0.0001%             |
| Construction time        | years    | Tc               | 3               | 2               | 1            | 1               | 1                  | 1               | 1                   | 1             | 1                   |
| Sources                  |          |                  | 1,7,12–15       | 1,7,12–14,16,17 | 1,3,7,12–14  | 7,9,13,14,18    | 1,7,9,13,14,18     | 1,7,12–14,19,20 | 1,7,9,13,14         | 7,13,14,21–24 | 7,12–14             |

### Impact of depth-of-discharge on cycle life is considered

### **Depth-of-discharge**

| Depth-of-Discharge | Pumped<br>hydro | Compressed air | Flywheel | Lithium-<br>ion | Sodium-<br>sulphur | Lead-<br>acid | Vanadium<br>redox-flow | Hydrogen | Super-<br>capacitor |
|--------------------|-----------------|----------------|----------|-----------------|--------------------|---------------|------------------------|----------|---------------------|
| 100%               | 33,250          | 16,250         | 143,402  | 3,250           | 4,098              | 1,225         | 8,272                  | 20,000   | 300,000             |
| 90%                | 33,250          | 16,250         | 143,402  | 4,875           | 4,131              | 1,336         | 8,272                  | 20,000   | 300,000             |
| 80%                | 33,250          | 16,250         | 143,402  | 6,297           | 4,193              | 1,501         | 8,272                  | 20,000   | 300,000             |
| 70%                | 33,250          | 16,250         | 143,402  | 8,531           | 4,592              | 1,763         | 8,272                  | 20,000   | 300,000             |
| 60%                | 33,250          | 16,250         | 143,402  | 10,766          | 5,299              | 2,074         | 8,272                  | 20,000   | 300,000             |
| 50%                | 33,250          | 16,250         | 143,402  | 14,219          | 6,006              | 2,598         | 8,272                  | 20,000   | 300,000             |
| 40%                | 33,250          | 16,250         | 143,402  | 18,586          | 7,050              | 3,194         | 8,272                  | 20,000   | 300,000             |
| 30%                | 33,250          | 16,250         | 143,402  | 24,984          | 8,516              | 4,211         | 8,272                  | 20,000   | 300,000             |
| 20%                | 33,250          | 16,250         | 143,402  | 35,953          | 10,654             | 6,316         | 8,272                  | 20,000   | 300,000             |
| 10%                | 33,250          | 16,250         | 143,402  | 60,734          | 21,325             | 13,183        | 8,272                  | 20,000   | 300,000             |
| Source             |                 |                |          | 25              | 26                 | 19            |                        |          |                     |