

Energiespeicherdienste für smarte Quartiere

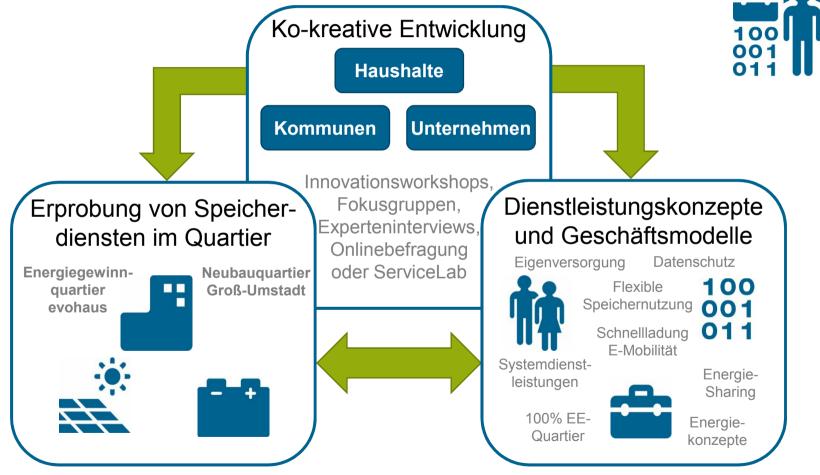
Ergebnisse aus dem Projekt ESQUIRE

Jan Knoefel

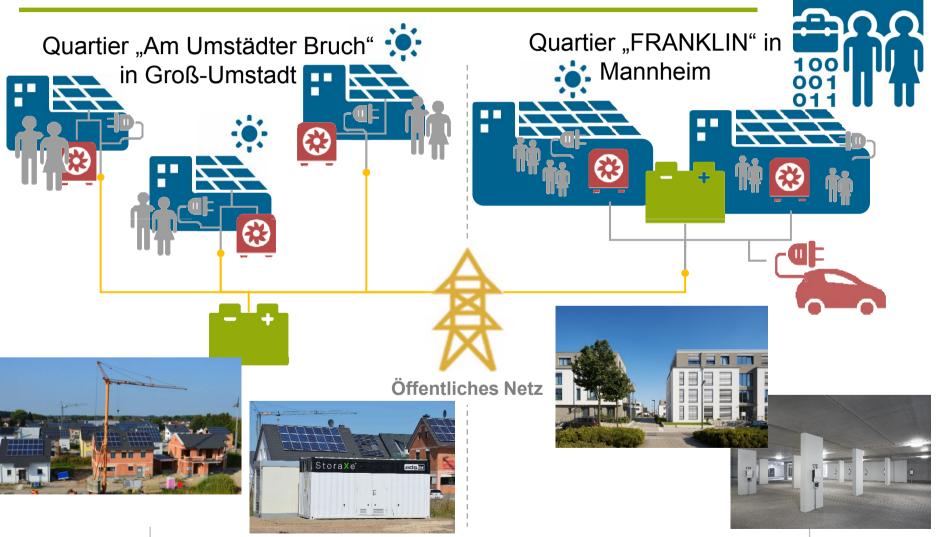
Institut für ökologische Wirtschaftsforschung

Strommarkttreffen

Berlin, 10.05.2019 www.esquire-projekt.de



Struktur


- 1. Das Projekt ESQUIRE
- 2. Ergebnisse aus Experteninterviews
- 3. Ergebnisse aus Nutzerbefragungen (optional)

1. Überblick über das Projekt Esquire Schematische Darstellung des Projekts

1. Überblick über das Projekt Esquire Die Quartiere

2. Ergebnisse aus Experteninterviews Überblick

Ziel der Untersuchungen:

Anforderungen an Speicherdienstleistungen aus Stakeholdersicht ermitteln

Befragte

Netzbetreiber

Speicherhersteller

Kommunen

Energieversorger

Politik

Methodisches Vorgehen:

- Leitfadengestützte Telefoninterviews
- Transkription
- Anonymisierte Auswertung

Themenfelder:

- Energiewende und zukünftige Entwicklung
- Aktuelle Situation und Rahmenbedingungen
- Förderung
- Partizipation und Akzeptanz
- Dienstleistungen und Geschäftsmodelle

2. Ergebnisse aus Experteninterviews

Meistgenannte Vorteile:

- Ökonomie: Kostengünstiger als Einzelspeicher (Skaleneffekte)
- Technischer Nutzen: Sinnvoll in Verbindung mit Mobilität
- Handhabbarkeit: Wartung, Brandgefahr, Anbindung ans Gesamtsystem

Meistgenannte Nachteile:

- Ökonomie: Schwierige Rahmenbedingungen
- Ökologie: Unklarheiten über Ökobilanz

2. Ergebnisse aus Experteninterviews

Netz

- EinsparungNetzausbau
- Netzdienstleistungen
- Punktuell Entlastung des Verteilnetzes
 - Blindleistungskompensation
 - Regelleistung
 - Netzstabilisierung
- Spannungshaltung
- Abschaltbare Last/ Reserve/Residuallast
- Anschlussleistung senken
 - Versorgungswiederaufbau

System

- Sichere Versorgung
- Überschussstrom speichern
- BilanzkreisoptimierungVirtuelle Speicherung
 - Peak-Shaving
 - Integration EE

Sektorkopplung

- Elektromobilität
- Power-to-Heat
- Integration Ladesäule
 - Carsharing

Endkunde

- Erhöhung Eigenversorgung
- Autarkie (bei Neubau)Energy Community
 - Optimierung
 - Eigenverbrauch

Markt

- MarktteilnahmeHandel
- Dynamische
- Netzentgelte – Neue
- Vertragsgestaltung

Beratung / Information

- Energieberatung
- Visualisierung
- Stromeffizienz
- Projektentwicklung

Betrieb / Wartung

- Betreuung Speicher
 - Steuerung
 - Abrechnung
 - Betrieb
 - Wartung

3. Ergebnisse aus Nutzerbefragungen Überblick über eingesetzte Methoden

Innerhalb der Quartiere

Quartiers-Köln befragung (QB), N=35

Groß-Umstadt Quartiersbefragung (QB), N=18 Innovations-Workshop (WS), N=17

Innovations-Workshop (WS), N=20

Onlinebefragung (OB),
N=519
Fokusgruppe
Berlin
(FG), N=8
Fokusgruppe
Düsseldorf

(FG), N=7

Außerhalb der Quartiere

3. Ergebnisse aus Nutzerbefragungen Quartierspeicher vs. Heimspeicher

- BewohnerInnen der Quartiere
 - Bevorzugen Quartierspeicher (in Groß-Umstadt etwas weniger als in Köln)
- Onlinebefragung
 - Deutliche Präferenz für Heimspeicher (70 %)
 - Aber grundsätzliche Offenheit für Quartierspeicher (60%)
- Fokusgruppen
 - Bevorzugen Quartierspeicher

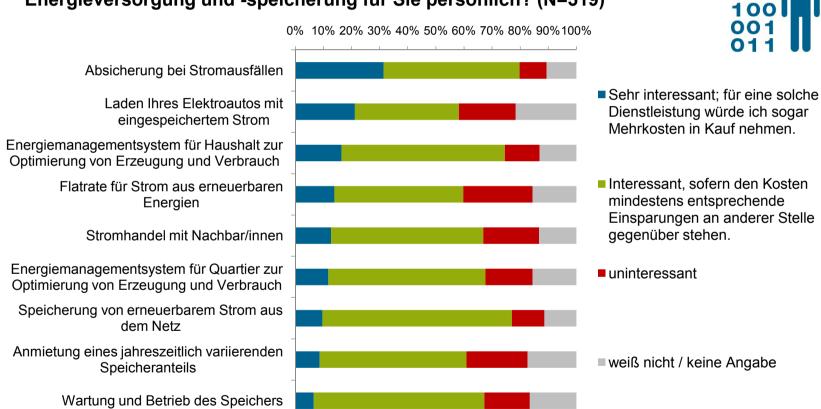
Annahme:

Präferenz hängt stark von (mangelnden) Erfahrungen und Wissen über Quartierspeicher sowie persönlichen und Quartiersrahmenbedingungen ab

3. Ergebnisse aus Nutzerbefragungen Vor- und Nachteile von Quartierspeichern

Vorteile

- Kosteneffizienz
- Bessere Auslastung
- Professioneller Betrieb
 - Geringerer eigener Aufwand
 - Weniger Fachwissen erforderlich
 - Geringeres Ausfallrisiko
 - Größere Verlässlichkeit
- Spezifisch weniger Ressourcen in der Herstellung
- Platzsparend
- Bei Mietmodell: keine Investitionskosten


Nachteile

- Skepsis bez. "gerechter" 01 Abrechnung
- Zweifel an Umsetzbarkeit
 - rechtl. Rahmenbedingungen
 - Herausforderungen in Bestandsquartieren
- Koordinationsaufwand mit NachbarInnen
- Bedenken, dass Gemeinschaftsgut weniger pfleglich behandelt wird
- Hoher Monitoringaufwand, Datenerfa ssung

3. Ergebnisse aus Nutzerbefragungen Onlinebefragung

Attraktivität unterschiedlicher Dienstleistungen

Wie interessant wären diese hypothetischen Angebote rund um Energieversorgung und -speicherung für Sie persönlich? (N=519)

10.05.2019

3. Ergebnisse aus Nutzerbefragungen Interesse an anderen Dienstleistungen

- OB
- Hohes Interesse (>80 %) an Monitoring, EMS, Flatrate für EE, P2P
- OB
- Immer noch hohes Interesse aber relativ etwas geringer. Eher geringe Bereitschaft für Dienstleistungen extra zu zahlen (nur bei 7-30 %)

- N N
- Interesse an Monitoring, Kopplung mit E-Mobilität und variablen
 Speicherscheiben (nur Groß-Umstadt)

Interesse an Monitoring und EMS, Cloudlösungen, E-Mobilität, P2P

3. Ergebnisse aus Nutzerbefragungen Fazit

- Offenheit für Quartierspeicher ist bei Besitzer/innen von PV-Anlagen grundsätzlich vorhanden
 - Information und Überzeugungsarbeit notwendig
 - Wirtschaftlichkeit steht im Vordergrund
 - Mögliche weitere Argumente: Effizienz, Komfort (weniger eigener Aufwand/ Wissen)
- Kommunikation und Ansprache
 - Von PV-Betreiber/innen sind vermutlich keine eigenen Initiativen für Quartierspeicher zu erwarten
 - Quartierspeicherlösungen und -dienstleistungen sind erklärungsbedürftig und erfordern proaktive Kommunikation
 - Erfahrungen mit Alternativen zum Heimspeicher erhöhen Bereitschaft für eine Quartierslösung -> Demonstrationsprojekte
- Vorsicht: Onlinebefragung und Fokusgruppen haben Interesse an Quartierspeicher hypothetisch betrachtet, daraus lässt sich nicht unmittelbar auf Verhalten schließen

Vielen Dank!

Jan Knoefel Strommarkttreffen Berlin, 10.05.2019 www.esquire-projekt.de

GEFÖRDERT VOM

Backup

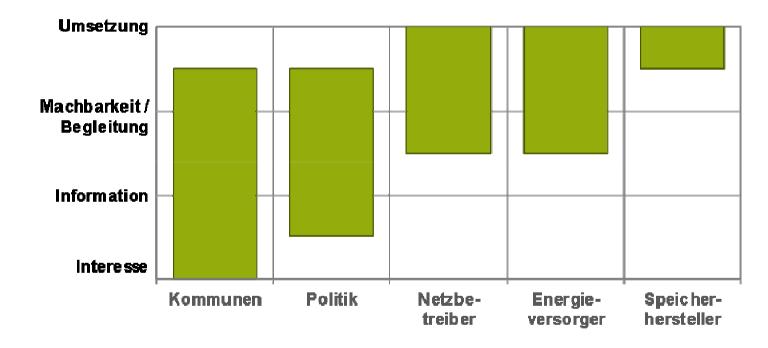
Jan Knoefel

Institut für ökologische Wirtschaftsforschung

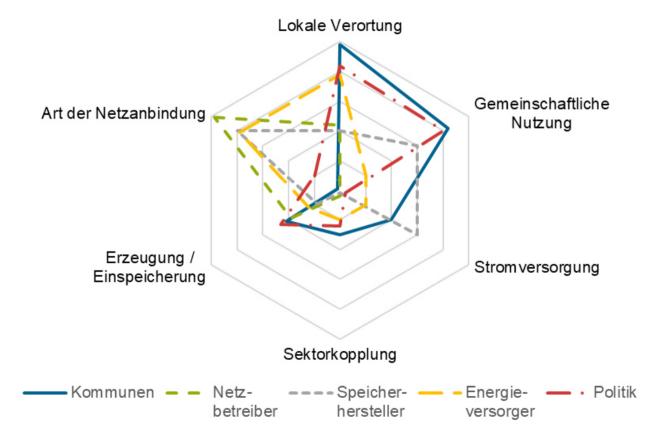
Strommarkttreffen

Berlin, 10.05.2019 www.esquire-projekt.de

GEFÖRDERT VOM



Vorerfahrungen der Expertinnen und Experten zu Quartierspeichern



Vorerfahrungen sind wichtig mit Bezug auf die Qualität der Antworten

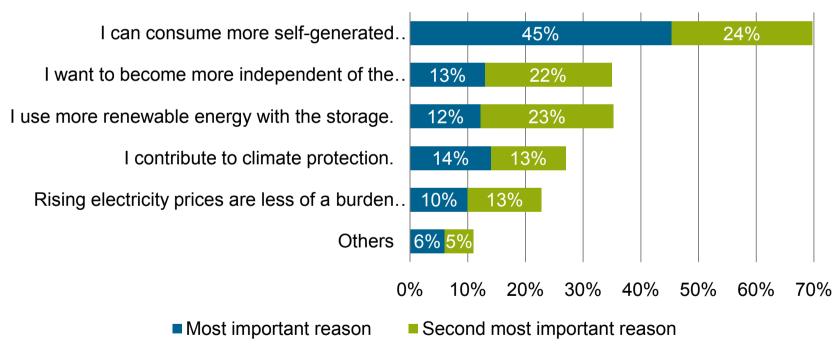
Relevante Aspekte für verschiedene Akteure beim Verständnis eines Quartierspeichers

Vorteile Quartierspeicher

Thema	Genannte Vorteile	Akteursgruppe				
Ökonomie	Kostengünstiger als Einzelspeicher (Skaleneffekte)				0	
	Sinkende Speicherpreise					
	 Weniger Investitionen für Mess- und Steuereinrichtung notwendig ggü. Einzelspeicher 					
Energetischer Nutzen	Reduzierung Energiebezug im Quartier					
	Einspeicherung von PV-Energie (Peak-Shaving)				0	
	Ausgleich von Erzeugung und Verbrauch					
	Quartierspeicher für den ländlichen Bereich geeignet				0	
Technischer Nutzen	Netzentlastung bei Erzeugungsüberschuss					
	Verbindung mit Mobilität				0	
	Flexiblere Nutzung als Einzelspeicher					
	Mehrfachnutzen möglich					
	Geringere Inverterleistung notwendig gegenüber Einzelspeichern					
	Lokale Stabilisierung des Netzes					
	Einfacheres Angebot von Regelleistung					
Effizienz	Vermutlich effizienter als Einzelspeicher					
Handhabbarkeit	Auslagerung von benötigtem technischen Knowhow					
	Leichtere Wartung und Anpassung					
	Bessere Handhabung von Brandgefahr					
	Leichtere Anbindung an andere Systeme und Steuerbarkeit von außen				•	
Ökologie	Unterstützung der Energiewende					
	Entsorgungskonzept für größere Speicher					
	Komponenten- und Materialeinsparung				0	
Umsetzbarkeit	 Partizipationsmöglichkeiten nicht nur für Eigenheimbesitzer/innen 				0	
Legende: Nommunen, Netzbetreiber, Speicherhersteller, Energieversorger, Politik						

10.05.2019

Nachteile Quartierspeicher


Thema	Genannte Nachteile	Akteursgruppe				
Ökonomie	Schwierige Rahmenbedingungen	• • • •				
	Hohe Investitionskosten					
	Insgesamt teurer als Einzelspeicher					
	Ein einzelner Betreiber übernimmt das Risiko					
Energetischer Nutzen	Größere Engpässe und Dunkelflaute können nicht behoben werden	•				
	Wenig Nutzungsbedarf	•				
	Stromspeicher nur sinnvoll, wenn deutlich mehr Erzeugung vorhanden als Verbrauch (nicht im städtischen Bereich)	•				
	Beim individuellen Ausgleich zwischen Erzeugung und Verbrauch ist Einzelspeicher sinnvoller	•				
Technischer Nutzen	Keine Langzeitspeicherung im Vergleich zu Erdgasspeichern	•				
	Noch keine Ausgereifte Steuerung und Anbindung	•				
	Notstromversorgung mit Einzelspeicher leichter machbar					
	 Nutzungsmöglichkeiten lassen sich auch durch andere Speichertechnologien ermöglichen 	•				
Effizienz	Möglicherweise ineffizienter	•				
	Wirkungsgradverluste bei Quartierspeichern	•				
Handhabbarkeit	Kontrollverlust für Endkunden	• •				
	Größere Einzelbrandlast					
	Anspruchsvolle Technik (gegenüber bspw. Wärmespeichern)	•				
Ökologie	Unklarheit über Ökologie / Energiebilanz	• • •				
	Geringer Beitrag zur Energiewende	•				
Umsetzbarkeit	Unsicherheit bei der langfristigen Nutzung	• •				
	Probleme bei der Aufstellung im öffentlichen Raum	• •				
	Viel Technik und Steuerung notwendig	•				
	Es braucht immer einen Projektentwickler					
Legende: Nommunen, Netzbetreiber, Speicherhersteller, Energieversorger, Politik						

3. Ergebnisse aus Nutzerbefragungen: Onlinebefragung Gründe zur Anschaffung von Speichern

Why are you interested in battery storage?*

^{*} The question was asked to those respondents who have no battery storage, but in principle would be willing to invest in a battery storage. (N=298 (most important reason) resp. 284 (second most important reason))