

# TSO-DSO-PX Interactions

Dr. Jörn C. Richstein Basel, 10.04.2019

#### Overview

- 1. Background
- 2. Why (increased) interaction between DSOs and TSOs (and PX)
- 3. Challenges & constraints to interaction
- 4. Coordination options
- 5. Comparison of interaction options
- 6. Congestion management at the DSO level (let's see if we get here)
- 7. Conclusions



# Background

- We organized 2 Workshops on the topics TSO-DSO-PX interactions (part of FPM series: www.diw.de/fpm)
  - Stakeholders from TSOs, DSOs, regulators, market participants and researchers
  - Chatham house rules
- Here: short summary of the summary of the workshop reports
  - Workshop reports not a verbatim protocol
  - But rather our own analysis after the discussion with stakeholders



## Changing environment for TSOs and DSOs

- 1. Increasing electricity demand (Dena: ~+40 to +100%)
- Increasing share of generation connected to the distribution grid
  - Most PV, large share of wind
  - Due to low capacity factor → multiplication of generation capacity
- 3. Previously uncorrelated demand patterns from individual households and firms exhibit increasing correlation (EVs, electric heating. Esp. with RTP)
- 4. Demand connected to distribution grid can provide increasing share of flexibility



## Challenges & Constraints

- Coordination of TSO and DSO request of flexibility
  - If competing: how to allocate resource
  - If aligned: how to allocate costs
- Locational information on available flexibility
  - Aggregation vs localisation?
- Liquidity and local market power
  - Reduce
  - Mitigate
- Centralisation vs Decentralisation
  - Computationally (AC-> non-linear), governance & cybersecurity
- DSO ownership of flexibility resources



- Static prequalification (Centralized AS Market Model)
- Cascade market model (Local AS Market Model)
- III. Shared balancing responsibility models
- IV. Vertical market coupling (Common TSO-DSO AS market model)
- V. Procurement (Joint or Decentralized) Coordinated by a Third Independent Party
- VI. Fully integrated market clearing

Market designs from Gerard et. al. (2018) (SmartNet), Ecoyfys & Fraunhofer IWES (2017) (Agora) and by Energy Networks Association (2017)



- I. Static prequalification (Centralized AS Market Model)
  - TSO manage AS markets. Static pre-qualification by DSOs
  - Closest to current market design
  - Pre-qualification → Cautionary principle → Limited flexibility
- Cascade market model (Local AS Market Model)
  - Waterfall principle: DSOs select flexibility first (or checks feasibility), than passes on TSO
  - Resources at D-Level procured & activated by DSOs
  - TSO only procure T-level resources, ask DSOs to activate
  - potentially over-procurement as DSOs incentivised to retain reserves for own operation

Also called "DSO Coordinates"-Model, Energy Networks Association (2017)



# III. Shared balancing responsibility model

- a centralized market operated by TSOs and a local market managed by DSOs, coordinated through pre-defined TSO-DSO schedules and managed separately at real-time
- DSOs responsible for balancing in their net
- →In contrast to EU regulation & goals: Balancing is usually seen as system wide property & domain of TSOs



- V. Procurement (Joint or Decentralized) Coordinated by a Third Independent Party / IntradayPlus
  - (Continuous) intraday market enriched by locational information
  - DSOs and TSOs in competition with other market participants
  - If continuous mechanism → highest bidder first → not a reserve



IV / VI Vertical market coupling (Common TSO-DSO AS market model) / Fully integrated market clearing

- Common procurement and activation in the same market place
- Differing levels of scope: energy, reserves & congestion management co-optimised in the same algorithm
- Differing levels of integration: iterative algorithms to fully decentralised solutions (e.g. Caramanis et al., 2016)



### Comparison of coordination options



#### Excursion: Local congestion management

#### **Physical situation at DSO level**



# Include congestion in clearing price (long-term perspective)

Local bids in local market

- Standardisation to facilitate clearing
- Unit based bidding
- Can be used for multiple services

#### **Motivation:**

- High efficiency for operation
- Correct incentives for investment

# Pretended copper plate with resolution of constraint violations

- Non-firm access for EV and other new sources of demand (regulated quota)
- (Compensated) spill of wind
- Auction for long-term services
- Local bids for flexibility (e.g. via a local platform which is vertically coupled to the TSO)



# Local congestion management: market power

- Linking several markets (one multi-part bid used for several markets over several time frames, can mitigate market power misuse)
- Automated market monitoring schemes (multi-part bidding can be helpful)
- Regulated price caps could be introduced in local markets (e.g. defined by wind spill costs)
- Local bids could be combined with long-term auctions for flexibility provision.

### Why move to locational prices as coordination mechanism?

- Many participants, opportunity costs and heterogenuous preferences abound → markets as the natural coordination mechanism
- Allow coordination and valuation over different (but potentially co-optimised) sub-markets
- Can be the underlying for futures products → hedging and investment decisions

 But they need to reflect the same underlying physical reality (Zonal TSO market and locational DSO market leads to the inc-dec game)



#### Conclusions

- Higher level of TSO-DSO-PX coordination will be needed
- The more information is available and used for coordination in real-time the higher system security and efficiency
- Priority access for either SO risks inefficiencies via overprocurement and counter-activations



#### Vielen Dank für Ihre Aufmerksamkeit.



DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Redaktion

#### References

- Caramanis, M., Ntakou, E., Hogan, W. W., Chakrabortty, A., & Schoene, J. (2016). Cooptimization of power and reserves in dynamic T&D power markets with nondispatchable renewable generation and distributed energy resources. Proceedings of the IEEE, 104(4), 807-836.
- Ecofys und Fraunhofer IWES (2017): Smart-Market-Design in deutschen Verteilnetzen. Studie im Auftrag von Agora Energiewende
- Energy Networks Association (2017), Open Networks Project Opening Markets for Network
  Flexibility 2017 Achievements and Future Direction,
  <a href="http://www.energynetworks.org/assets/files/electricity/futures/Open\_Networks/14574\_EN\_A\_Open%20Networks%20Report\_AW\_v9\_Web.pdf">http://www.energynetworks.org/assets/files/electricity/futures/Open\_Networks/14574\_EN\_A\_Open%20Networks%20Report\_AW\_v9\_Web.pdf</a>
- Gerard, H; Rivero Puente, I.E.; Daan Six (2018), Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework, Utilities Policy, Volume 50, Pages 40-48
- Neuhoff, Karsten; Jörn Richstein (2017), TSO-DSO-PX Cooperation. Report on the key elements of debate from a workshop of the Future Power Market Platform, http://hdl.handle.net/10419/167313
- Papavasiliou, A. (2017). Analysis of distribution locational marginal prices. IEEE Transactions on Smart Grid.

