Using ENKO for infeed management – method and prediction capabilities

Dr. Clemens Gerbaulet 15.03.2018

Renewable curtailment in Schleswig-Holstein 2018 Distribution of intensity

Infeed management in Schleswig-Holstein in 2017¹

~3.300 GWh
Curtailment of renewable energy sources

~350 Mn € Costs for grid customers

Today I will talk about ENKO

ENKO is part of the SINTEG-project NEW 4.0

NEW 4.0 goal: 100% renewable energy supply for the Region Hamburg and Schleswig-Holstein until 2035

- Increase local renewables usage: sector coupling, smart-grid approaches
- ENKO (by ARGE Netz and SH Netz) uses voluntary demand flexibility
 → More green electricity, less grid congestion and less infeed management
- The ENKO-platform is live since January:
 - → Q3 & Q4 2018: Live-simulation of ENKO with pilot-customers
 - → During simulation: Feedback, process optimization, technical feasibility
 - → Since January 2019: Real operation

Using Flexibility for congestion management in ENKO

^{*} In the framework of the research project balance compensation by the grid operator is not done.

Predictions using sophisticated artificial neural networks

Prognoses published on netzampel.energy (after ENKO gate closure)

13. November 2018, 14:00

www.netzampel.energy

Actual renewable curtailment Prediction of renewable curtailment

Cost & sensitivity-based algorithm → cost-efficient selection

Cost-efficient "sensitivity merit order": Selection is based on costs to relieve congestion for all grid congestions simultaneously

Example calculation for price-sensitivity merit order with a single congestion (1,5MW) and only 0% and 100% regulation steps also for renewables

Asset	Power (MW)	Sensi tivity	Price (€/MWh)	Price- sensitivity (€/MWh)	Congestion- reduction (MW * Sens)	Cost 1h	Awarded?
EEG 01	3	0,3	90 €	300 €	0,9 MW	270 €	Yes
EEG 02	2	0,25	90 €	360 €	0,5 MW	180 €	Yes
Flex 01	1	0,23	95€	413 €	0,23 MW	95€	Yes
Flex 02	1	0,23	97 €	422 €	0,23 MW	97 €	No
EEG 03	2	0,21	89€	424 €	0,42 MW	178 € Savings 83 €	No

Lessons learned from live operation and live-simulation

The ENKO concept generally works and amends existing processes

- · Voluntary participation of flexibility providers generally works
- Processes are transparent
- Extension to Einsman, does not influence safe grid operation
- · Validation of load-provisioning based on meter data

Status

- · Live operation based on SINTEG VO since January 2019
- · Both API and Web-interfaces are important standards necessary
- New capabilities developed that can be built upon in the future if needed:
 - · Prediction structure works well for ENKO process
 - · New algorithms such as sensitivity based merit order optimization algorithm

Thanks!

Dr. Clemens Gerbaulet clemens.gerbaulet@hansewerk.com

