EU ETS emission reductions through fuel-switching

Yiyi Bai¹ Samuel J. Okullo²

¹Zhongnan University of Economics and Law

 $^2\mbox{Potsdam}$ Institute for Climate Impact Research

Hertie School, Nov. 2018

Outline

Background

Theoretical model

Empirical results

Key question that is addressed

- ▶ Has the EU ETS contributed to emission reductions?
 - Possibly yes; because of allowance pricing
 - Possibly no; because of low allowance prices

Key question that is addressed

- ▶ Has the EU ETS contributed to emission reductions?
 - Possibly yes; because of allowance pricing
 - Possibly no; because of low allowance prices
- Opportunities for emission reductions in the power generation industry
 - ► Short-term: "fuel-switching"
 - Long-term: carbon-free capacity accumulation

Key question that is addressed

- ▶ Has the EU ETS contributed to emission reductions?
 - Possibly yes; because of allowance pricing
 - Possibly no; because of low allowance prices
- Opportunities for emission reductions in the power generation industry
 - Short-term: "fuel-switching"
 - Long-term: carbon-free capacity accumulation
- Short-term fuel-switching:
 - Substitute coal-fired generation with gas-powered generation
 - Possible within the EU by: (i) generator, (ii) nationally, and (iii) regionally

The literature

- ▶ Does the allowance price depend on fundamentals? Hintermann (2010, JEEM), Koch et al (2016, JEEM), Koch et al (2014, EP), Aatola(2012, EE), Rickels(2014, GER)
 - Mostly no. Prices depend on some but not all relevant fundamentals

The literature

- ▶ Does the allowance price depend on fundamentals? Hintermann (2010, JEEM), Koch et al (2016, JEEM), Koch et al (2014, EP), Aatola(2012, EE), Rickels(2014, GER)
 - Mostly no. Prices depend on some but not all relevant fundamentals
- Do generators pass-through emission costs to wholesale markets?
 Sijm et al (2008, CP), Fabra and Reguant (2014, AER), Hintermann (2016, JAERE)
 - ► Yes. Generators completely pass-through emission costs

Contribution

- 1. Integrated structural framework through which to assess the efficiency of an emission trading system
 - 1.1 Evaluate empirical outcomes against theoretical benchmarks
 - 1.2 This way we can pinpoint where the market is failing

A general model of fuel-switching

Objective: maximize power generation revenues net of generation costs

$$J(\bullet) = \max_{g_t, c_t} \mathbb{E}_k \int_{t>k}^{\infty} \rho_t \left(p^e \left(E_t, y_t \right) e(g_t, c_t) - p_t^g g_t - p_t^c c_t - p_t^x x_t \right) dt$$

 $[\]rho$ discount factor; p^e,p^g,p^c,p^c electricity, gas, coal, & allowance prices; E market electricity supply; e agents supply; y demand shift; g gas; c coal; a banked allowances; α^y,α^x drift terms; σ^y,σ^x volatility component; ϕ^g,ϕ^c intensities

A general model of fuel-switching

Objective: maximize power generation revenues net of generation costs

$$J(\bullet) = \max_{g_t, c_t} \mathbb{E}_k \int_{t \ge k}^{\infty} \rho_t \left(p^e(E_t, y_t) e(g_t, c_t) - p_t^g g_t - p_t^c c_t - p_t^x x_t \right) dt$$

Do this subject to evolution of bank and price shocks:

$$\dot{a}_{t} = x_{t} - \phi^{g} g_{t} - \phi^{c} c_{t}$$

$$dy_{t} = \alpha^{y} (y_{t}) dt + \sigma^{y} (y_{t}, e_{t}) dz_{t}^{y}$$

$$dp_{t}^{x} = \alpha^{x} (p_{t}^{x}) dt + \sigma^{x} (p_{t}^{x}, a_{t}) dz_{t}^{x}$$

 $[\]rho$ discount factor; p^e, p^g, p^c, p^x electricity, gas, coal, & allowance prices; E market electricity supply; e agents supply; y demand shift; g gas; e coal; e banked allowances; e0, e2 drift terms; e3, e4 volatility component; e5, e6 intensities

Equilibrium conditions

Set price to marginal production cost:

$$p^{e} = \frac{1}{\vartheta e_{g}(g,c)} p^{g} + \frac{\phi^{g}}{\vartheta e_{g}(g,c)} p^{x}$$
$$p^{e} = \frac{1}{\vartheta e_{c}(g,c)} p^{c} + \frac{\phi^{c}}{\vartheta e_{c}(g,c)} p^{x}$$

 $[\]vartheta$ Lerner index; p^e, p^g, p^c, p^x electricity, gas, coal, & allowance prices; e_g , e_c marginal product of gas and coal; ϕ^g, ϕ^c intensities of coal and gas; g gas; c coal

Equilibrium conditions

Set price to marginal production cost:

$$p^{e} = \frac{1}{\vartheta e_{g}(g,c)} p^{g} + \frac{\phi^{g}}{\vartheta e_{g}(g,c)} p^{x}$$
$$p^{e} = \frac{1}{\vartheta e_{c}(g,c)} p^{c} + \frac{\phi^{c}}{\vartheta e_{c}(g,c)} p^{x}$$

Whereby eliminating p^e gives:

$$p^{x} = \frac{e_c}{\left(\phi^c e_g - \phi^g e_c\right)} p^g - \frac{e_g}{\left(\phi^c e_g - \phi^g e_c\right)} p^c$$

 $[\]vartheta$ Lerner index; p^e, p^g, p^c, p^x electricity, gas, coal, & allowance prices; e_g , e_c marginal product of gas and coal; ϕ^g, ϕ^c intensities of coal and gas; g gas; c coal

Equilibrium conditions

Optimal banking condition:

$$\left(1/dt\right)\mathbb{E}_{t}d\left(p^{x}\right)=\sigma^{x}\sigma_{a}^{x}J_{p^{x}p^{x}}+\sigma^{e}\sigma_{e}^{e}e_{g}J_{yy}+\sigma^{e}\sigma_{e}^{e}e_{c}J_{yy}+rp^{x}$$

 $[\]rho$ discount factor; p^e, p^g, p^c, p^x electricity, gas, coal, & allowance prices; E energy supply; y demand shift; g gas; c coal; a banked allowances; α^y, α^x drift terms: α^y, α^x volatility component; α^g, α^c intensities

Findings

► An active fuel-switching mechanism is prevalent but likely limited by trading frictions (both traded and non-traded frictions)

Findings

- ► An active fuel-switching mechanism is prevalent but likely limited by trading frictions (both traded and non-traded frictions)
- ► For several EU ETS countries, allowance prices consistently drive dispatch choices of coal vis-à-vis gas and vice versa

Findings

- ► An active fuel-switching mechanism is prevalent but likely limited by trading frictions (both traded and non-traded frictions)
- ► For several EU ETS countries, allowance prices consistently drive dispatch choices of coal vis-à-vis gas and vice versa
- ► The demand for allowance banking is explained neither by risk nor scarcity premiums, but rather by random historical shocks

Data and sources

- ► Financial data collected from DataStream
 - ► Gas futures prices (TTF, NBP, ZEE)
 - Coal futures prices (API2)
 - Electricity futures prices (DE, NL, UK, BE, IT, FR, NDPL)
 - Stock indices and interest rates

Data and sources

- ► Financial data collected from DataStream
 - ► Gas futures prices (TTF, NBP, ZEE)
 - Coal futures prices (API2)
 - Electricity futures prices (DE, NL, UK, BE, IT, FR, NDPL)
 - Stock indices and interest rates
- Weather data collected from KNMI
 - wind gust, sunshine duration, average temperature, rainfall

Data and sources

- Financial data collected from DataStream
 - ► Gas futures prices (TTF, NBP, ZEE)
 - Coal futures prices (API2)
 - Electricity futures prices (DE, NL, UK, BE, IT, FR, NDPL)
 - Stock indices and interest rates
- Weather data collected from KNMI
 - wind gust, sunshine duration, average temperature, rainfall
- Other controls
 - time and season indicators
 - dummies for extreme movements

Results I:

$$p_t^{\mathsf{x}} = \beta_1 p_t^{\mathsf{g}} + \beta_2 p_t^{\mathsf{c}} + X_t \beta + \epsilon_t$$

	(1) Static	Short-run (2) Dynamic	Long-run propensities (5)		
Natural gas (€/mWH)	0.179***	0.162***	0.203***	0.140***	0.179***
	(0.057)	(0.052)	(0.049)	(0.043)	(0.058)
Coal (€/mWH)	-0.199**	-0.182***	-0.190***	-0.152**	-0.201***
	(0.078)	(0.067)	(0.067)	(0.059)	(0.075)
Auto-regressive lag	No	Yes	No	No	No
N	539	539	539	539	539
adj. R-sq	0.493	0.501	0.479	0.504	0.573

Results II

gas-fired:
$$p_t^e = \beta_1 p_t^g + \beta_2 p_t^x + X_t \beta + \epsilon_t$$
 coal-fired: $p_t^e = \beta_1 p_t^c + \beta_2 p_t^x + X_t \beta + \epsilon_t$

	German	Dutch	U. Kingdom	Belgian	Italy	France	Nordpoo
	(2) 2SLS	(4) 2SLS	(6) 2SLS	(8) 2SLS	(10) 2SLS	(12) 2SLS	(14) 2SLS
PANEL A: natural gas eq	uation (TTF))					
Natural gas (€/MWh)	1.204***	1.540***	1.348***	1.584***	1.114***	2.038***	1.190***
	(0.100)	(0.096)	(0.110)	(0.176)	(0.109)	(0.187)	(0.098)
Allowance (€/tCO2)	0.443**	0.417**	0.532**	0.502	0.589**	0.586#	0.449**
	(0.201)	(0.192)	(0.221)	(0.373)	(0.243)	(0.374)	(0.196)
N	539	539	539	505	495	539	537
Adj R-squared	0.400	0.476	0.358	0.365	0.448	0.424	0.401
PANEL D: coal equation	(CIF ARA AF	PI2)					
Coal (€/MWh)	2.071***	2.287***	2.581***	3.075***	2.446***	2.961***	2.053***
	(0.301)	(0.312)	(0.328)	(0.611)	(0.374)	(0.560)	(0.294)
Allowance (€/tCO2)	0.972***	1.100***	1.121***	1.243***	1.177***	1.490***	0.964***
	(0.212)	(0.220)	(0.231)	(0.394)	(0.254)	(0.396)	(0.208)
N	539	539	539	505	495	539	537
Adj R-squared	0.289	0.274	0.253	0.289	0.374	0.319	0.287

Results III

$$\Delta p_t^{x} = \beta_1 \sigma_t^e + \beta_2 \sigma_t^{x} + \beta_3 p_t^{x} + X_t \beta + \epsilon_t$$

Results I-Robustness

			yea	year-ahead futures						
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Outliers	Controls	Zeebrugge	NBP	Phase II	Phase III	Phase I - III	2008-2018	2009-2015	2006-2010
Natural gas (EUR/mWH)	0.224*** (0.080)	0.178*** (0.057)	0.126** (0.054)	0.117** (0.049)	0.177** (0.082)	0.184** (0.086)	0.105*** (0.039)	0.326*** (0.076)	0.422*** (0.096)	0.357*** (0.099)
Coal (EUR/mWH)	-0.209*	-0.205**	-0.177**	-0.169**	-0.215**	-0.199#	-0.147**	-0.180*	-0.357***	-0.236*
	(0.118)	(0.080)	(0.078)	(0.077)	(0.109)	(0.122)	(0.068)	(0.097)	(0.132)	(0.129)
N	539	539	539	539	260	279	689	537	364	210
adj. R-sq	0.121	0.493	0.487	0.487	0.441	0.529	0.510	0.501	0.484	0.416

Results II - Robustness

							Electricity pri	ice (€/MWh)					
	German Baseload		Dutch B	Baseload	UK B	aseload	Belgian	Baseload	IT Ba	seload	French Baseload		Nordpool Baselo	
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS	(7) OLS	(8) 2SLS	(9) OLS	(10) 2SLS	(11) OLS	(12) 2SLS	(13) OLS	(14) 2SLS
PANEL A: natural gas equ														
Natural gas (€/MWh)	1.174***	1.204***	1.514***	1.540***	1.308***	1.348***	1.606***	1.584***	1.111***	1.114***	2.026***	2.038***	1.166***	1.190***
Allowance (€/tCO2)	(0.128)	(0.100)	(0.116)	(0.096)	(0.188)	(0.110) 0.532**	(0.197) 0.205	(0.176) 0.502	(0.149)	(0.109)	(0.258) 0.654***	(0.187) 0.586#	(0.127)	(0.098)
Allowance (€/tCO2)	(0.167)	(0.201)	(0.165)	(0.192)	(0.208)	(0.221)	(0.251)	(0.373)	(0.182)	(0.243)	(0.247)	(0.374)	(0.171)	(0.196)
N	539	539	539	539	539	539	505	505	495	495	539	539	537	537
Adj R-squared	0.420	0.400	0.492	0.476	0.386	0.358	0.363	0.365	0.456	0.448	0.428	0.424	0.417	0.401
PANEL B: natural gas e	nuation (N	BP)												
Natural gas (€/MWh)	0.909***	0.930***	1.263***	1.284***	1.055***	1.079***	1.268***	1.259***	0.883***	0.895***	1.601***	1.619***	0.919***	0.935***
	(0.114)	(0.088)	(0.103)	(0.083)	(0.156)	(0.096)	(0.175)	(0.147)	(0.132)	(0.097)	(0.243)	(0.162)	(0.107)	(0.086)
Allowance(€/tCO2)	0.759***	0.399*	0.714***	0.357*	0.932***	0.501**	0.234	0.263	0.628***	0.552**	0.818***	0.475	0.717***	0.401**
	(0.189)	(0.206)	(0.188)	(0.195)	(0.220)	(0.225)	(0.256)	(0.374)	(0.197)	(0.248)	(0.267)	(0.381)	(0.192)	(0.201)
N	539	539	539	539	539	539	505	505	495	495	539	539	537	537
Adj R-squared	0.392	0.363	0.486	0.461	0.369	0.330	0.354	0.354	0.430	0.419	0.410	0.401	0.394	0.368
PANEL C: natural gas e														
Natural gas (€/MWh)	1.057***	1.073***	1.398***	1.412***	1.234***	1.255***	1.360***	1.348***	0.911***	0.918***	1.792***	1.800***	1.047***	1.060***
(0/:000)	(0.109) 0.769***	(0.091) 0.544***	(0.102) 0.741***	(0.087) 0.546***	(0.163) 0.941***	(0.099)	(0.180) 0.256	(0.156)	(0.137)	(0.098) 0.614**	(0.258) 0.849***	(0.171) 0.724*	(0.113) 0.733***	(0.090)
Allowance (€/tCO2)	(0.185)	(0.201)	(0.183)	(0.191)	(0.212)	(0.218)	(0.257)	(0.374)	(0.191)	(0.247)	(0.259)	(0.376)	(0.189)	(0.197)
N	539	539	539	539	539	539	505	505	495	495	539	539	537	537
Adj R-squared	0.417	0.391	0.502	0.479	0.402	0.366	0.354	0.355	0.435	0.424	0.421	0.413	0.414	0.390
PANEL D: coal equation (CIE ARA A	PI2)												
Coal (€/MWh)	1.997***	2.071***	2.213***	2.287***	2.490***	2.581***	2.887***	3.075***	2.411***	2.446***	2.880***	2.961***	1.981***	2.053***
/	(0.704)	(0.301)	(0.670)	(0.312)	(0.710)	(0.328)	(0.640)	(0.611)	(0.420)	(0.374)	(1.034)	(0.560)	(0.636)	(0.294)
Allowance (€/tCO2)	0.913***	0.972***	0.944***	1.100***	1.104***	1.121***	0.510*	1.243***	0.881***	1.177***	1.108***	1.490***	0.870***	0.964***
	(0.192)	(0.212)	(0.191)	(0.220)	(0.197)	(0.231)	(0.276)	(0.394)	(0.200)	(0.254)	(0.286)	(0.396)	(0.201)	(0.208)
N	539	539	539	539	539	539	505	505	495	495	539	539	537	537
Adj R-squared	0.308	0.289	0.287	0.274	0.281	0.253	0.278	0.289	0.378	0.374	0.319	0.319	0.302	0.287

Engineering-based efficiencies and emission intensities

	Germany		Netherlands		U. Kingdom		Belgium		Italy		France		Spain		Portugal	
	2005	2016	2005	2016	2005	2016	2005	2016	2005	2016	2005	2016	2005	2016	2005	2016
PANEL A: power	r plant	efficiency i	n percen	t (eg and	e _c)											
Natural gas	0.404	0.444	0.418	0.503	0.511	0.526	0.484	0.512	0.454	0.464	0.480	0.480	0.629	0.556	0.507	0.371
Coal	0.377	0.371	0.418	0.411	0.369	0.370	0.379	0.409	0.372	0.380	0.368	0.383	0.375	0.385	0.327	0.388
PANEL B: heat	rate in	MWh Fuel	per MW	/h Electric	city (e_{σ}^{-1}	and e_c^{-1})										
Natural gas	2.472	2.252	2.390	1.990	1.955	1.902	2.065	1.953	2.203	2.155	2.083	2.083	1.589	1.798	1.973	2.699
Coal	2.655	2.696	2.390	2.433	2.710	2.703	2.636	2.446	2.690	2.632	2.717	2.612	2.669	2.596	3.054	2.576
PANEL C: emis	sion inte	nsities aft	er combu	stion in t	CO2 per	MWhe (e	$_{\sigma}^{-1}\phi^{g}$ and	$e_c^{-1}\phi^c$								
Natural gas	0.455	0.415	0.440	0.366	0.360	0.350	0.380	0.359	0.405	0.397	0.383	0.383	0.292	0.331	0.363	0.497
Coal	0.904	0.918	0.814	0.829	0.923	0.921	0.898	0.833	0.916	0.896	0.925	0.890	0.909	0.884	1.040	0.877
Coal/Gas ratio	1.987	2.215	1.850	2.263	2.564	2.631	2.362	2.318	2.259	2.259	2.413	2.320	3.108	2.672	2.864	1.766

Time series properties

		2008 to 2018							2005 to 2010						
Variable	Obs.	Mean	SD	R. t. Var	AC(1)	AC(2-8)	Obs.	Mean	SD	R. t. Var	AC(1)	AC(2-8)			
Coal															
API2	539	-0.04	3.04	1.000	0.330	0.062	311	0.16	3.40	1.000	0.385	0.090			
ICE Rotterdam year-ahead	538	-0.02	3.11	1.021	0.265	0.030	210	0.27	3.69	1.087	0.333	0.060			
Gas															
ICE TTF month-ahead	539	-0.03	4.12	1.352	0.193	0.025	306	0.19	6.53	1.922	0.235	0.023			
ICE TTF year-ahead	539	-0.04	3.27	1.075	0.123	0.012	306	0.16	3.72	1.097	0.347	0.014			
ICE Zebrugge month-ahead	539	-0.03	4.49	1.475	0.167	0.011	172	0.21	6.39	1.880	0.196	0.012			
ICE Zebrugge year-ahead	539	-0.03	3.20	1.051	0.140	0.024	311	0.17	4.33	1.276	0.116	0.039			
ICE NBP month-ahead	539	-0.03	4.75	1.560	0.158	0.013	163	-0.02	6.54	1.925	0.179	0.004			
ICE NBP year-ahead	539	-0.03	3.58	1.175	0.231	0.005	163	-0.02	4.53	1.333	0.303	0.031			

Results III

$$p^{x} = \frac{e_{g}^{-1}(g,c)}{\left(\phi^{c}e_{c}^{-1}(g,c) - \phi^{g}e_{g}^{-1}(g,c)\right)}p^{g} - \frac{e_{c}^{-1}(g,c)}{\left(\phi^{c}e_{c}^{-1}(g,c) - \phi^{g}e_{g}^{-1}(g,c)\right)}p^{c}$$