Nodal Pricing Some Pros and Cons

Lion Hirth | Strommarkttreffen | 18 Oct 2018

About this talk

Sources and acknowledgements

- Study "Nodale und zonale Strompreissysteme im Vergleich" for Germany's BMWi with three workshops and input from a dozen experts
- START project, various other studies

Objectives of this talk

- Provide a brief introduction to nodal pricing
- Discuss the pros and cons of nodal pricing as compared to zonal pricing
- Outline alternative (or additional) instruments for locational incentive

Not objectives of this talk

- Argue in favor or against nodal pricing
- Present the German government's position on nodal pricing
- Argue that introducing nodal pricing is (politically or legally) realistic or not
- Draw final conclusions

Relevant policy debates

- Difficulties and delays with transmission grid expansion
- Redispatch and curtailment costs
- Impacts on neighbors
 - Loop flows
- Bidding zone delimitation / market splitting
 - DE/AT split
 - Various studies on bidding zone delimitation, including ETNSO-E's Bidding Zone Review
 - Top level commitment to keep uniform German bidding zone
- Market based redispatch
 - Clean Energy Package proposal by the Commission

Agenda

- 1. An Introduction to Nodal Pricing
- 2. Nodal Pricing: Pros and Cons
- 3. Locational Investment Incentives

Nodal vs. zonal pricing in a nutshell

Different approaches how to give electricity markets spatial granularity

- Zonal: larger regions (e.g., countries)
- Nodal: individual network bus bars ("nodes")

Making sure transmission constraints are respected

- Zonal: congestion within zones are managed *after* dispatch
- Nodal: network restrictions are accounted for *during* the dispatch decision-making

Institutional features of nodal pricing systems

- One single trading platform: independent system operator
- Trading on hubs
- Base risk traded as financial transmission rights
- Price regulation, often with capacity mechanisms

Texas was a single bidding zone 1999 - 2001, then 4-5 zones, before nodal pricing was introduced in 2010.

Nodal pricing: price determination

- Line capacity between nodes is not fully used \rightarrow prices converge
- Congested lines \rightarrow prices diverge
- Price at node X is determined as "marginal benefit for total system if an additional MWh is fed into this node, accounting for all network constraints"
- Example
 - In-feed at X relaxes constraint
 - As a consequence, it is possible to ramp up cheap generation elsewhere
 - Consequence: price at X is very high to reflect the high value of generation here
- Load flow follows Kirchhoff's rules: calculations are complex, require computer model
- Theory established by Schweppe et al. (1988) and others

 $\prec \bigcirc \, ||$

7

Institutional features of real-world nodal pricing systems

- Bidding, scheduling and clearing has to be done for each node
- Independent system operator (ISO) operates the power grid and spot market in an integrated way
- ISO does not own the grid
- Dispatch (schedule) is determined by sophisticated unit commitment computer model operated by ISO ("central dispatch")
- Minimize total system costs subject to network constraints: "securityconstrained economic dispatch"
- A single mandatory trading platform (ISO)
- Complex bids and high time resolution (5 min for real-time markets)
- Usually: price caps and capacity mechanisms

Financial markets in nodal pricing systems

- Spot markets: dispatch decisions
- Financial markets: hedging
- Zonal pricing: one financial market per zone
- Nodal pricing: one financial market per node would lead to low (or zero) liquidity → pool liquidity at "hubs"
- Risk of price deviations between hub and node (base risk) → financial transmission rights (FTRs)
- Financial Transmission Rights: contract between two parties with obligation (or option) to pay hour-by-hour price differences between two locations

Agenda

- 1. An Introduction to Nodal Pricing
- 2. Nodal Pricing: Pros and Cons
- 3. Locational Investment Incentives

Comparing nodal pricing ... to what? Three prototypes

Pros and cons of nodal pricing can also be discussed relative to a benchmark

Compare to "zonal pricing" – but zones can be small or large

We compared three prototypes: "Status Quo", "CACM bidding zones" and "Nodal Pricing"

	Status Quo (1)	CACM Bidding Zones (2)	Nodal Pricing (3)
Bidding zone delimitation determined by	National borders (mostly)	Structural congestion	-
Revision of zone delimitations	No (stable zones)	Yes, every 5 years	_
# of zones in GER	1	2-10	100s
Congestion management	After dispatch, cost-based (except at zonal border)	Between (1) and (2)	Integrated with dispatch, incentive-based
Institutional framework	Network operation (TSO) separated from wholesale trading (PX)	(1)	Integrated optimization of network operation with dispatch (ISO)

Criteria

We have collected more than 40 criteria, grouped into 10 clusters

- 1. Impact on dispatch decisions (static efficiency) and flexibility
- 2. Impact on investment decisions in power plants and flexibility resources (dynamic efficiency)
- 3. Impact on network investments (dynamic efficiency)
- 4. Impact on other electricity markets
- 5. Need for regulatory interventions
- 6. Impact on renewable energy sources
- 7. "Political" criteria
- 8. Security of supply
- 9. Impact on neighboring systems

10. Cost of system transformation

	Status Quo (1)	CACM zones (2)	Nodal Pricing (3)		
1. Impact on dispatch decisions (static efficiency) and flexibility					
Use existing grid efficiently	Moderate to high (depending on quality of redispatch process)	Moderate to high (depending on quality of redispatch, # of zones)	High (if well implemented an regulated)		
Incentives for efficient plant and flex-resource dispatch	Locational efficiency within zones missing	Between (1) and (3), depending on # of zones	Locational precise, but central dispatch can stifle innovation		
Support short gate closure and scheduling intervals	-	See (1)	Possibly: reduced manual interventions allow shorter GC		
Support intraday markets	Continuous trading or sequence of auctions	See (1)	Sequence of auctions		
Redispatch volume	High if network expansion remains delayed	Reduced compared to (1)	No redispatch		
Technical network operations (e.g. switching operations)			[Disagreement]		
Potential for market power abuse (spot)	Limited, because rare scarcity	Moderate	High, because frequent local scarcity		
Potential for market power abuse (redispatch)	High (depends on regulatory regime)	Moderate	-		
Options to mitigate market power	Cost-based redispatch	Between (1) and (3), depending on # of zones	Price regulation of spot bids		
Conclusions	If both systems are implemented optimally, differences in dispatch efficiency are small: the dispatch algorithm then resembles the nodal pricing algorithm. In reality, differences due to imperfect redispatch and market power abuse (and regulation) are likely.				

	Status Quo (1)	CACM zones (2)	Nodal Pricing (3)			
2. Impact on investment decisions in power plants and flexibility resources (dynamic efficiency)						
Incentives for spatially efficient investments into plants and flex- resources	None based on market price signals (except across zones)	Moderate, at bidding zone level; Effectiveness depends on credibility and stability zonal price signals	Stronger incentives; effectiveness depends on credibility and stability of local price signals – may still be significantly too low			
Incentives for investments into system- wide flexibility options	High due to possibility of competitive and efficient price signals at system level	Between (1) and (3), depending on # of zones	Possibly dominated by local effects and uncertainties; development of new flex options only within specified bidding types – thus flexible bidding options are important (multi-part bid etc.)			
Credibility of prices as incentives for investments	High due to more stable prices (Individual decisions hardly affect prices) Low if investors do not consider price system as sustainable	Between (1) and (3), depending on # of zones	Reduced when local prices are difficult to predict and strongly influenced by individual (line extension) decisions			
Market entry of new actors	<u>Hypothesis</u> : New entries are easier due to pooling, particularly small flex options may be easily aggregated and jointly marketed. <u>Antithesis</u> : Difficult, as different flex options need to be pooled in order to model standardized products.	Similar to (1), but smaller pools, higher transaction costs	<u>Hypothesis</u> : Inter-nodal pooling of flex impossible, high transaction cost impedes efficient development of unconventional flex options <u>Antithesis</u> : Simple, since pooling unnecessary, due to (i) possibility of multi- part bids, (ii) No discrimination against small actors in case of deviations			
Incentives for spatially efficient investments into RES	Depends only on the RES support scheme	Interaction with RES-support scheme	Interaction with RES-support scheme			
Conclusions	Strength of local investment signal rises from (1) to (3). However, its effectiveness is fundamentally dependent on predictability and credibility. Strength of systemwide investment signal rises from (3) to (1). Other local investment signals (spatially differentiated grid usage and connection fees, RES support, tenders) can be combined with all price systems.					

Crucial aspects: market power and investment incentive

Market power abuse and regulatory response

- Locational market power is much more pervasive than zonal market power
- Most regulators have responded with price caps ...
- ... resulting in missing money and under-investments ...
- ... triggering capacity payments
- Not a great option (in my view)

Locational investment incentives

- Do nodal prices provide the right incentives to invest at the right location?
- Doubts: locational prices have little long-term credibility
- Main reason: a single (political) network investment will drastically reduce local prices

Agenda

- 1. An Introduction to Nodal Pricing
- 2. Nodal Pricing: Pros and Cons
- 3. Locational Investment Incentives

Market design elements with locational incentive

 \rightarrow How to make sense of this myriads of proposals?

Clustering instruments

The instruments can be grouped by their economic principles into 5 clusters

- 2 Small bidding zones with cost-based redispatch
 - Locational prices
- Locational procurement of capacity
 - Locational administrative price signals

3

R

Market-based redispatch: zonal plus local "extra" market

Keep zonal spot market, add local "extra" market

- Market based redispatch (Article 14 of the proposed Electricity Market Regulation)
- Can come in various forms: dedicated "redispatch market"; market(s) for local flexibility; local intraday order book; balancing market with local information

Feedback to spot via strategic bidding: the "INC/DEC game"

- Generators and loads have an incentives to hold back capacity on the spot market if they expect better prices on "extra" market
- The spot loses incentive compatibility: agents stop bidding true marginal costs
- In effect, the "extra" market can quickly become the "lead market"
- Requirement: constraints can be anticipated

Local "extra" markets converge to nodal pricing

- But lack important features like FTRs
- ightarrow "If you want nodal pricing, implement it properly"

Combining spot design with investment incentives

Concluding thoughts

Textbook economics emphasizes static efficiency of nodal pricing

- This is largely undisputed, but probably reduces system costs by not more than few %pt
- Other arguments are likely to be more important (we studied 40+)

Crucial aspects are (in my view)

- Market power, how to mitigate it, and how to avoid regulatory overreaction
- Investment incentives and credibility of price signals

No market design performs best in all criteria: trade-offs have to be made

• Weighting criteria are subjective – decision is (to some degree) political

Reconfiguring zones add significant regulatory risk

• Possibly worse than both stable zones and nodal pricing

Market-based redispatch (or other local "extra" markets) can converge quickly to *de facto* nodal pricing

• If you want nodal pricing, better implement it properly – not through the back door

Nodal Pricing Some Pros and Cons

Lion Hirth | Strommarkttreffen | 18 Oct 2018

