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Call-for-Pay

Uncertainties in Energy Markets

September 24-25, 2018, Essen, Germany

» Keynote speakers:
¢ Katja van Doren, RWE Generation SE (GER)

Political and regulatory uncertainties in the energy markets: an industry perspective

e Prof. Andreas Loschel, University of Minster (GER)

Energy Transition in Germany - Status quo and Challenges

e Prof. Stein-Erik Fleten, NTNU Trondheim (NOR)

Coordinated vs sequential bidding into short-term electricity markets

e Prof. Rafat Weron, Wroctaw UST (POL)

Recent advances in electricity price forecasting: A 2018 perspective
» Best paper award (sponsored by GEE)
» Organizers: Prof. Christoph Weber, Prof. Florian Ziel
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Motivation: Point forecasting 1

» in energy systems and market modelling various (fundamental)
model elements are uncertain

» In particular: electricity load/demand, renewable energy production
(esp. wind and solar)
~» Models with uncertainty are required
if modelling time is in future ~- forecasting models
Standard setting:
» given historic data (and a model) creating a H-step ahead forecast

» target of interest Y = (Y1,...,Yy) ~ Fy, H-dim. random variable
e.g. hourly day-ahead load (24-dim.), hourly weak-ahead load (168-dim.)

» in practice the true distribution Fy is unknown we just observe y

» if we have a forecast we can only compare the performance by
comparing it with y

» evaluation relies on some repeatability of the forecasting experiment

Probabilistic Load Forecasting 3/22
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Forecasting Problem
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Reporting and evaluating point forecasts 1
> X estimator for a centre pointe.g. E(Y') or Med(Y")

—

» evaluation based on forecasting error Y — X, resp. y — X
» [ can be strictly proper evaluated using MSE (mean square error)

» Med can be strictly proper evaluated using MAE (mean absolute
error)

DE Load (MWh)
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Why point forecasting is not sufficient? 1
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» deterministic and linear merit order curve
» deterministic and inelastic load/demand curve
» Here: Electricity price 50 EUR/MWh
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» deterministic and linear merit order curve
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» Here: Mean electricity price 50 EUR/MWh
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Why point forecasting is not sufficient? 1
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» deterministic and non-linear merit order curve
» deterministic and inelastic load/demand curve
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Why point forecasting is not sufficient? 1
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Solution: Probabilistic forecasting 1

probabilistic forecasting:
Forecast which characterises the uncertainty in the forecast

four main option

» Prediction intervals
e.g. Mean Forecast + Standard deviation ( i + Ko )

» Quantile forecasts on a quantile grid
» Density forecasts (strictly marginal densities)
» Ensemble forecasting

Probabilistic Load Forecasting
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Probabilistic forecasting 1

DE Load (MWh)
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Prediction intervals
e.g. Mean + Standard deviation (i + Ko )
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Problem: Too simple, uncertainty not fully covered

istic Load Forecasting
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Probabilistic forecasting: Quantile forecasting
» Quantile Forecasts on a quantile grid (e.g. 10%, . ..,90%)

DE Load (MWh)
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Relatively popular (e.g. Global Energy Forecasting Competitions
(99%-tiles))

Strictly proper evaluation: pinball score/ quantile loss

Problem: Still too simple, dependency structure not covered

1
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Probabilistic forecasting: Density forecasting 1

DE Load (MWh)
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Density forecasts (strictly marginal densities)

“|—— historic observations
—— quantile forecast (10%,...,90%)
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Not popquue;?i more difficult than quantﬁ?ewapproach, but share same
properties

Strictly proper evaluation: continuous rank probability score (CRPS)
= limiting case of pinball score

Problem: Still too simple, dependency structure not covered
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Probabilistic forecasting evaluation 1
» Problem with standard probabilistic methods (e.g quantile
forecasting):

o forecasting only the marginals distributions
e ignoring the dependency structure
crucial for industrial load forecasting

' ' | i,
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(source: Berk, Hoffmann, Miiller (2017) International Journal of Forecasting)
» require full multivariate forecast Fx for Fy (multivariate H-dim.
density forecast)

Probabilistic Load Forecasting



Reporting multivariate forecasts

» for sophisticated problems forecast distribution F'x (or density fx)
is not explicitly available.

» reporting forecast as a large ensemble X1 ... X ) for
forecasting Y':
Ensemble forecasting

Evaluation requires a forecasting study:

» repeat N (similar) forecasting experiments in a rolling window
forecasting study: forecasts X1,..., Xy for Y7,..., Yy

» realised ensemble forecasts X; = (:c,gl), .. ,a:(.M)

;") of the forecasting
distribution Xj; for Y;

Probabilistic Load Forecasting 15/22
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Probabilistic forecasting: Ensemble forecasting 1

DE Load (MWh)
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Ensemble forecasting (Simulating many path from the model)

—— historic observation

—— ensemble forecast
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Not popular (yet), somehow more difficult to use and requires good
models

No Problems, theoretically all problems can be solved (only
possible computational burdens)

Probabilistic Load Forecasting



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

lllustration rolling window forecasting study 1
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Figure: lllustration of a rolling window forecasting study with non-overlapping
windows (s; = H(i — 1)) fori =1,...,3 windows and M = 6 forecast samples

(1) (M) ; i
Try, ..., xp,; foreach window i.

Probabilistic Load Forecasting



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Evaluation measures for multivariate distributions 1
some measures available

» Energy score
1 —_—
ESs(Fx,y) = E (I1X —ylly) —5E(IX - XII5)

3 tid

e >0, X,X X Fy
o if H=1and =1~ CRPS
o strictly proper

» Variogram score

H H
VS,(Fx,y; W) = > wijlly: — yl” — B|X; — X,[P)?
i=1 j=1

e with p > 0 and weight matrix W = (w; ;) ; (usually w; ; = ¢)
e not strictly proper (forecasts with shifted mean have same score)

Probabilistic Load Forecasting
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Evaluation measures for multivariate distributions 1

» Log-score
LogS(Fx,y) = log(fx(v)).

e where fx is density of Fx
o strictly proper
e density forecast for X often not available (even if X is continuous)

» Dawid-Sebastiani score
DSS(Fx,y) =log(|Zx|) + (¥ — px)'Sx (y — px)

e with px and X x as mean and covariance matrix of X.
e optimal if Y is normally distributed
e not strictly proper

» Summary on Scores:

e only energy score and log-score strictly proper
e log-score not useful for practice as density forecast is required

Probabilistic Load Forecasting 19/22
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Estimating the energy score 1

» for standard (multivariate) scores estimation straight forward, e.g.

Ess(Fx.y) = E (IX ~ ) - 3& (IX - X)

estimated by

3 z |x¢-x

j 1i=j+

~ tri 1 M )
ESy = 7 2 | X — v 2
j=1

or alternatively by

ZH 2—*2\\ x|,

to reduce computational costs.

Probabilistic Load Forecasting 20/22
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Ensemble forecasting for electricity load 1
Requires:
» Recursive time series model: e.g. AR(1)

Yi = Bo+ B1Yio1 + et

» Recursive forecasting, simulate first Y711, then Yro, ...

» External regressors (fundamental inputs) need to be forecasted as
well
~+ only useful if we have good forecasts available for the regressor
available, e.g.

Y; = Bo + B1Yi—1 + BoTemperature, + &;

~~ deterministic effects are extremly valuable (esp. seasonal and
holiday pattern, (known) maintenance periods)

Probabilistic Load Forecasting 21/22
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Summary 1

» Non-linear problems under uncertainty require probabilistic
forecasts

> Inter-temporal problems require ensemble forecast
» Ensemble forecasts strictly proper evaluated by energy score

Observed
Quantile:1%
—— Quantile:5%
Quantile:10%
—— Quantile:20%
Quantile:30%
Quantile:40%
Quantile:50%
Quantile:60%
Quantile:70%
—— Quantile:80%
Quantile:90%
\ ~——— Quantile:95%
Quantile:99%

y in GW

Load of CTY_DE_German:

Aug 19 Aug 21 Aug 23 Aug 25 Aug 27

2018 Time in UTC

PS: quantile forecast is reported, model provides ensemble forecasts as well)
www.uee.wiwi.uni-due.de/en/research/load-forecasting/
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