

An outlier topic in this session:

How much electrical storage does the integration of variable renewable energy sources require?

Our answer to Sinn (2017)

Paper by Hans-Werner Sinn (European Economic Review 2017)

- Increasing vRES shares would require excessive storage
- Reason: volatility of (onshore) wind power and PV
- Stylized analysis for Germany:
 - 17% variable RES share → No storage required
 - 30% variable RES share → 40 GWh storage required (roughly as PHS today)
 - 50% variable RES share → 2,100 GWh
 - 68% variable RES share → 5,800 GWh (more than European PHS potential)
 - 89% variable RES share → 16,300 GWh
- Somewhat lower in (stylized) European interconnection
- Sinn's conclusion: storage needs limit the transition to RES

Our answer

- Open-source rebuttal, addressing questionable implicit assumptions
- We illustrate the effects of flexible sector coupling (power-to-x)

- BMWi (2017)
- Cebulla et al. (2017)
- Jacobson et al. (2015)
- Repenning et al. (2015) KS 95
- ## Scholz et al. (2017)

- Budischak et al. (2013) batteries
- de Sisternes et al. (2016)
- ◆ MacDonald et al. (2016)
- Safaei and Keith (2015)
- •••• Sinn (2017)

- ▲ Budischak et al. (2013) GIV
- ▲ Denholm and Hand (2011)
- △ Pape et al. (2014)
- ▲ Schill (2014)
- Present analysis

- Budischak et al. (2013) H2
- Denholm and Mai (2017)
- Repenning et al. (2015) KS 80
- Schill and Zerrahn (2018)

How does Sinn derive such large figures?

Stylized general approach

- Hourly time series on demand and a combined (onshore) wind and PV capacity factor (2014 German data)
- Scale up RES capacity until desired annual RES share is reached
- Minimum storage capacity (GWh) to integrate all variable renewables

Storage heuristic

- Store hourly renewable surplus generation
- Release energy as soon as residual demand is positive again

What is missing

Questionable implicit assumptions

- Full RES integration by electrical storage, no curtailment
- No economic objective function
- Heuristic storage strategy (w.r.t. both dispatch and investment)
- No flexible power-to-x
- Others:
 - No dispatch of other plants
 - No other flexibility options
 - No endogenous combinations of renewables
 - No offshore wind
 - ...

Replication

We can replicate it!

Open input data (OPSD), open Excel tool (https://doi.org/10.5281/zenodo.1170554)

Share of variable renewables in final consumer demand in percent

Intuition: What drives Sinn's results?

Full integration of all vRES drives storage requirements

Residual load duration curve (here 80% vRES)

Intuition: What drives Sinn's results?

Full integration of all vRES drives storage requirements

Residual load duration curve: storage shifts surplus from A to B

Renewable curtailment strategy 1: power-oriented

We introduce power-oriented curtailment (storage loading restriction)

Same Excel tool, but renewable surplus curtailed if larger than threshold (D)

residual load residual load after curtailment · · · · residual load after curtailment and storage use

Renewable curtailment strategy 1: power-oriented

Result: storage needs substantially lower

Maximum allowed renewables curtailment in percent

→ 40% variable renewables → 70% variable renewables

50% variable renewables80% variable renewables

─60% variable renewables

→ 70% variable renewables

Slightly increased renewable capacities

If some renewable energy is curtailed, necessarily higher renewable capacities

• • • 80% variable renewables

Renewable curtailment strategy 2: energy-oriented

We introduce energy-oriented curtailment (storage energy restriction)

Same Excel tool, but renewable surplus curtailed if storage full

Renewable curtailment strategy 2: energy-oriented

Result: storage needs even lower than under strategy 1

40% variable renewables

→ 50% variable renewables

─60% variable renewables

• • 80% variable renewables

Alternative approach: optimization with stylized cost minimization model and same input data

Endogenous storage and curtailment: still moderate storage capacities

[■] Storage energy capacity (left axis) ■ Storage power capacity (left axis)

Curtailment (right axis)

Effects of (generic) power-to-x

Flexible use of (additional) vRES for "X"

- Heat, mobility, hydrogen, ...
- This triggers both
 - additional renewable capacity expansion
 - and additional demand flexibility
- Stylized parameterization:
 - 50 GW
 - 2,000 full-load hours (i.e. 100 TWh)
 - perfectly flexible

Result: substantially lower storage and curtailment

Renewable surplus as a valuable resource

- Storage energy capacity without P2X (left axis)
- Curtailment without P2X (right axis)

- Storage energy capacity with P2X (left axis)
- Curtailment with P2X (right axis)

Electrical storage needs for different P2X settings for 70% vRES

Conclusions

- Sinn's findings on storage needs deviate strongly from the literature
- We replicate and extend the analysis with open data and open-source tools
 - https://doi.org/10.5281/zenodo.1170554
 - http://arxiv.org/abs/1802.07885 (just accepted for publication in EER)
- Main point: assumption of full vRES integration (no curtailment)
- More suitable: cost minimization approach
 - More detailed analysis desirable
- Flexible sector coupling further decrease storage needs
 - Especially those triggered by right-hand side of residual load curve

Additional material

Shorter German version: DIW Aktuell 11
http://www.diw.de/documents/publikationen/73/diw 01.c.591369.de/diw aktuell 11.pdf

- News coverage: Tagesspiegel Background, EUWID, PV magazine...
- Reply by Hans-Werner Sinn and re-reply by us

Thank you for listening

DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Contact Wolf-Peter Schill wschill@diw.de