ALTERNATIVE CONGESTION MANAGEMENT – EFFECTIVE ZONAL (EZ) PRICING

Presenter: V Qian, Lim

Email: limvqian@hotmail.com

ZONAL PRICING

Zonal Pricing

- Inelastic demand, **q** and supply curve form a spot market with zonal price **p**.
- Part of the production is not feasible but participated in the pricing calculation
- After redispatch, some of the demand **q** is matched with the supply (production) on the right side of demand curve.

EZ PRICING

Concept of EZ Pricing – Effective Supply

Concept of EZ Pricing – Effective Demand

EZ Pricing – Effective Zonal pricing

EZ Pricing – Effective Zonal pricing

EXAMPLE

Node	МС	Max Supply	Demand
А	0-25	25	24
В	0-17	17	11
С	0-17	17	16
Total		59	51

The production in each node is increasing marginal cost of production. The more produced, the higher the marginal cost. The capacity of node A is 25, node B is 17 and node C is 17. The total possible production of the network is 59.

Solution – Nodal Pricing

Node	Node Price €	Node Supply
А	20	20
В	14	14
С	17	17

Efficient dispatch is node A produce 20 unit, node B produce 14 unit and node C produce 17 unit

Solution – Zonal Pricing (cost-based redispatch)

Solution – Zonal Pricing (market-based redispatch)

Solution – Zonal Pricing (bid-based redispatch)

EZ Pricing (1. calculate nodal price and dispatch)

Node	Node Price €	Node Supply	Demand
А	20	20	24
В	14	14	12
С	17	17	16

To obtain efficient dispatch, electricity flow, production in each node and nodal price

EZ Pricing (2. determine ICN and ECN)

Node	All lines are inflow and congested	All lines are outflow and congested	Characteristic
A	Yes	No	Import Constrained Node (ICN)
В	No	Yes	Export Constrained Node (ECN)
С	No	No	Transition Node

Node	МС	Max Supply	Demand
А	0-25	25	24
В	0-17	17	11
С	0-17	17	16

Set node A (ICN) has no production and demand is the total capacity of connected line.

Node	МС	Effective Supply	Effective Demand
А	0	0	2+2=4
В	14	2+1=3	0
С	0-17	17	16

Set node A (ICN) has no production and demand is the total capacity of connected line.

Set node B (ECN) has no demand, nodal price remain the same but the supply capacity is the total capacity of connected line.

Node	МС	Effective Supply	Effective Demand
А	0	0	4
В	14	3	0
С	17	17	16

Set the nodal price and supply quantity of node C (transition node) according to the nodal pricing (first step).

Node	МС	Effective Supply	Effective Demand
А	0	0	4
В	14	3	0
С	17	17	16
Total		20	20

The effective supply curve of the network is shown as left. The effective inelastic demand of the network is **20**.

EZ Pricing (4. determine EZ price)

EZ Price: 17

Node	Node Price €	Effective Supply	Effective Demand
А	0	0	4
В	14	3	0
С	17	17	16
Effective Demand (D*)			20

The determined EZ price from the left graph is €17

EZ Pricing (5. dispatch and payment)

EZ Pricing (5. dispatch and payment)

Solution – EZ Pricing

EZ Price: 17

DB=11 DC=16

Summarizing

Congestion Management technique	Market Clearing Price	Average Redispatch Price
Nodal Pricing	20, 14, 17	n/a, n/a, n/a
Zonal Pricing (cost-based redispatch)	17, 17, 17	18.5, (15.5), n/a
Zonal Pricing (market-based redispatch)	17, 17, 17	20, (14), n/a
Zonal Pricing (bid-based redispatch)	20, 20, 20	20, (14), n/a
EZ Pricing	n/a, 17, 17	20, 17, n/a

Comparison

Comparison	Nodal Pricing	Zonal Pricing	EZ Pricing
Efficient dispatch	Yes	Yes	Yes
Effective Investment signal	Yes	Νο	Yes
Fairness (produce and receive payment)	Yes	Νο	Yes
Competitiveness	Low	High	Medium
Computation	Medium	Easy	Complicated

Comparison – Effective Investment signal

Congestion Management technique	Market Clearing Price	Average Redispatch Price
Nodal Pricing	20 14, 17	n/a, n/a, n/a
Zonal Pricing (cost-based redispatch)	17, 17, 17	18.5, (15.5), n/a
Zonal Pricing (market-based redispatch)	17, 17, 17	20, (14), n/a Invest HERE!
Zonal Pricing (bid-based redispatch)	20, 20, 20	20, (14), n/a
EZ Pricing	n/a, 17, 17	20 17, n/a

Comparison – Fairness

Congestion Management technique	Market Clearing Price	Average Redispatch Price
Nodal Pricing	20, 14, 17	n/a, n/a, n/a
Zonal Pricing (cost-based redispatch)	17, 17, 17	18.5, (15.5) n/a
Zonal Pricing (market-based redispatch)	Not producing, // // // // // // // // // // // // //	20, (14) n/a
Zonal Pricing (bid-based redispatch)	20, 20, 20	20, (14) n/a
EZ Pricing	n/a, 17, 17	20, 17, n/a

Zonal Pricing vs EZ Pricing

Nodal Pricing

Competitiveness

Discussion

- 1. What happen if there is a sudden huge supply of renewable energy in node B (Export Constrained Node)? (3 more quantity supplied)
- 2. What happen if there is a demand spike in node A (Import Constrained Node)? (3 more quantity demanded)

Solutions – Supply Shocks in ECN

Congestion Management technique	Market Clearing Price	Average Redispatch Price
Nodal Pricing	20, 11, 17	n/a, n/a, n/a
Zonal Pricing (cost-based redispatch)	16, 16, 16	18, (13.5), 16.5
Zonal Pricing (market-based redispatch)	16, 16, 16	20, (11), 20
Zonal Pricing (bid-based redispatch)	20, 20, 20	20, (11), n/a
EZ Pricing	n/a, 17, 17	20, 17, n/a

Solutions – Demand Shocks in ICN

Congestion Management technique	Market Clearing Price	Average Redispatch Price
Nodal Pricing	23, 14, 17	n/a, n/a, n/a
Zonal Pricing (cost-based redispatch)	20, 20, 20	21, (15.5), n/a
Zonal Pricing (market-based redispatch)	20, 20, 20	23, (14), n/a
Zonal Pricing (bid-based redispatch)	23, 23, 23	23, (14), n/a
EZ Pricing	n/a, 17, 17	23, 17, n/a

Conclusion of EZ Pricing

- Effective supply consist of feasible production
- Effective demand matched by the production on the left side
- The reduced demand are paid by the price from <u>nodal market-based redispatch</u> or EZ price (whichever is higher)
- Fair pricing technique that uniform price only involve active producers and feasible demand
- Stable price that has less spill over effect

THANKYOU

By: V Qian, Lim