### The value of wind revisited: A systems-planning perspective



Council for Scientific and Industrial Research (CSIR): Energy Centre

Strommarkttreffen *Reiner Lemoine Institut, Berlin. October 2017* 

**Joanne Calitz Jarrad Wright Dr Tobias Bischof-Niemz**  JRCalitz@csir.co.za JWright@csir.co.za TBischofNiemz@csir.co.za

our future through science

#### Agenda







#### Agenda

| 1 | Methodology |
|---|-------------|
| 2 | Results     |
| 3 | Conclusions |



### Methodology: Run LT least-cost expansion for increasing penetrations of wind energy in greenfield system (2017 demand & costs)



### Methodology: Run LT least-cost expansion for increasing penetrations of base supply energy in greenfield system (2017 demand & costs)



our future through science

### With no wind included as an expansion option, a particular portfolio of generators are built

Greenfield system: LT least-cost expansion without wind



### With a pre-defined amount of wind allowed - a new portfolio of generators is built

Greenfield system: LT least-cost expansion with 10% available wind



### The cost to supply the residual load after the pre-defined amount of wind is calculated for each penetration of wind



### Average system value is the cost difference relative to the cost to supply with no wind included (0% penetration)

![](_page_8_Figure_1.jpeg)

9

### Marginal system value is the cost difference relative to the previous penetration level

![](_page_9_Figure_1.jpeg)

Adequacy = same for all wind penetrations; Full chronology (hourly)

### Marginal system value declines quicker than average value (as expected)

![](_page_10_Figure_1.jpeg)

Adequacy = same for all wind penetrations; Full chronology (hourly)

#### Decline in average and marginal value as penetration level increases

![](_page_11_Figure_1.jpeg)

### More notable degradation of wind value as soon as wind begins to be curtailed

![](_page_12_Figure_1.jpeg)

#### Agenda

| 1 | Methodology |
|---|-------------|
| 2 | Results     |
| 3 | Conclusions |

![](_page_13_Picture_2.jpeg)

### Initial residual portfolio is coal-based but changes as wind penetration increases where solar PV and gas-fired CCGTs/OCGTs are preferred

Total capacity and energy of residual load for each penetration level of wind

![](_page_14_Figure_2.jpeg)

#### The effect of the wind profile is notable but not significant

Value of wind tested with multiple wind profiles from 2009 - 2013

![](_page_15_Figure_2.jpeg)

#### Marginal value of wind declines as expected but not as quickly as seen in previous literature

Value of wind tested with multiple wind profiles from 2009 - 2013

![](_page_16_Figure_2.jpeg)

### With same methodology but applied for a base-supplier and no wind to isolate the effect

Total capacity and energy of residual load for each penetration of base supply

![](_page_17_Figure_2.jpeg)

### Average value for a base-supplier also declines but nowhere near as much as wind (as expected)

Average system value of base supply generator decreases as energy share of base supply increases

![](_page_18_Figure_2.jpeg)

#### More importantly – what is the value of wind relative to a basesupplier and what are the actual relative costs of each?

Wind value relative to base supply

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

#### Due to differences in profiles, wind value generally < base supply value at higher energy shares (as expected)

Example day: hourly generation for wind and base supply at 50% energy share

#### Residual load wind > Residual load base supply at higher energy shares as some wind is wasted

![](_page_20_Figure_3.jpeg)

| Agenda |             |      |   |
|--------|-------------|------|---|
|        | -           | <br> | • |
| 1      | Methodology |      |   |
| 2      | Results     |      |   |
| 3      | Conclusions |      |   |

![](_page_21_Picture_2.jpeg)

## As penetration 1 - wind value decline not as extreme as expected and wind value-factor never below relative base-supply to wind cost-factor

#### System-planning approach to valuing power generators for a range of penetration levels (focus on wind)

- Value of any power generator can be considered wind and base supply presented
- As expected average and marginal value of wind declines with increasing penetration <u>but:</u>
- Value of wind greater than cost for penetration levels of up to 60-70%

#### Interesting outcomes:

- For a range of wind profiles change in wind value is not too large
- Average and marginal wind value decline not as significant for all penetration levels (as seen in the literature )
- Value factor (relative to base-supply) never below cost factor of wind to base suppliers (coal/nuclear)

#### **Going forward:**

- Study based on 2017 costs. Future costs for batteries and solar PV plus uptake of electric vehicles change optimal capacity mix towards higher share of solar PV
- Apply methodology to other technologies (solar PV) and other jurisdictions
- How important is the wind resource and profile?
- Other aspects to enable richer findings and test whether fundamental findings change:
  - Cost of balancing (effect of forecast errors)
  - Relative grid-related costs

![](_page_22_Picture_16.jpeg)

# Thank you

![](_page_23_Picture_1.jpeg)