Will assets be stranded or bailed out? Expectations of investors in the face of climate policy

Suphi Şen Marie-Theres von Schickfus

ifo Institute

Strommarkttreffen
Berlin, October 20, 2017
Stranded Assets

- Stranded assets: assets which lose economic value before the end of their economic / technical life
- Assets related to fossil energy may become stranded due to climate policy
 - Fossil resources ("unburnable carbon")
 - Other kinds of assets (infrastructure, cars,...)
 - ... and financial assets linked to these assets (shares, bonds, ...)

Stranded assets: assets which lose economic value before the end of their economic / technical life
Assets related to fossil energy may become stranded due to climate policy
- Fossil resources ("unburnable carbon")
- Other kinds of assets (infrastructure, cars,...)
- ... and financial assets linked to these assets (shares, bonds, ...)

Fossil resources (“unburnable carbon”)
Other kinds of assets (infrastructure, cars,...)
... and financial assets linked to these assets (shares, bonds,...)
If markets still allocate capital to fossils:
 - this allocation today implies a higher cost to achieve climate goals (IPCC 2014)
 - if sudden revaluations of assets and firms occur, this can translate into macroeconomic shocks

Important to understand: what is investors’ perception regarding stranded asset risk? (How) is it priced in?
Research question

- What are investors’ priors regarding stranded asset risk, and
- (how) do these priors change when climate policy proposals are announced?
What we do

- Exploit the evolution of a climate policy proposal in Germany in three stages
- Conduct event study on all three stages (effect of news on asset returns of affected companies)
- The sign pattern of the reactions to these proposals reveals information on investors’ priors and updating behavior
- Investor type we look at: stock market investors (equity)
Policy background: “Klimabeitrag”

- Climate policy proposal for Germany in 2015
- Aim: to reduce CO₂ emissions from German power sector by an additional 22 million tonnes
Stage 1: “Climate levy” proposal - *Uncompensated policy*

- In March 2015, Ministry presents first draft
- Main idea: charge an extra levy on CO$_2$ emissions from power-generating units
 - older than 20 years, and
 - for those emissions that exceed a certain threshold (levy-free allowance)
- Most (or only) affected energy carrier: Lignite
- Proposal would have led to stranding of assets
Stage 2: “Security reserve” proposal - \textit{Compensated policy}

- Idea: turn some share of lignite capacity into security reserve (paid for holding capacity ready)
- July 2, 2015: Coalition summit decides
 - no climate levy
 - security reserve: 2.7 GW will be mothballed and turned into security reserve
Stage 3: State aid assessments - *Challenge to compensation*

- July / August: Report for German Parliament concludes that security reserve may violate EU state aid rules
- September: EU Commission announces to open state aid case
What are investors interested in?

Scenarios for their priors and reactions

<table>
<thead>
<tr>
<th></th>
<th>Stage 1: Uncompensated policy</th>
<th>Stage 2: Compensated policy</th>
<th>Stage 3: Challenge of compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>don't care</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>respond to policies, didn’t price in stranded asset risk before</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>have priced in expected loss, but are surprised by compensation</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>price in loss and expect compensation</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Methodology: Event study

- Underlying assumption: markets price in information as soon as it becomes publicly available (semi-strong form of market efficiency hypothesis)

- Terminology: Returns of asset i: $r_{it} = \ln p_{i,t} - \ln p_{i,t-1}$, i.e. daily change in the logarithm of asset prices
Timeline and basic approach

Basic approach:

- Predict “normal” returns of an asset
- Calculate abnormal returns (= prediction error)
- Calculation of cumulative abnormal returns (CARs) over event window
- Formally: Test whether event window dummy is significant
Affected companies

- In 2015, three stock-listed firms active in German electricity production: RWE, E.ON and EnBW
- RWE and E.ON have lignite capacity older than 20 years, EnBW does not
Results by event type

<table>
<thead>
<tr>
<th>Companies</th>
<th>Climate levy proposal</th>
<th>Security reserve proposal</th>
<th>State aid assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWE</td>
<td>0.018</td>
<td>0.016</td>
<td>-0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.019)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>E.ON</td>
<td>0.014</td>
<td>-0.011</td>
<td>-0.074***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
</tbody>
</table>

Baseline specification: 5-day event window, 90-days estimation window, error distribution $\epsilon_{it} \sim NID(0, \sigma^2)$; explanatory variable: DAX. The results are robust to changes in all these specifications.

Table: ACAR by Event Type
Conclusion

- Investors are concerned about stranded asset risk...
- ...but they also believe in the lobbying power of firms (or other political economy mechanisms which enable compensations)
- Results are robust to controlling for firm-specific and industry-specific shocks
Conclusion

- The analysis is specific to the German context
- But: implications for the design of climate policy
 - Expectations of investors are crucial for a transition to clean capital
 - If compensations are expected, they may be necessary to avoid larger shocks
 - Policymakers and researchers need to better understand the interactions between policymaking and investors’ expectations
Thank you!

Contact: vonschickfus@ifo.de