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Electricity
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Reactive power has to be more flexible in the 
future

Reactive power supply: conventional and flexible scenario

Source: Kraftwerksliste BNetA 2015, Netzentwicklungsplan 2025

Reactive power supply

 Conventional supply through large 
power plants and compensators

 Availability in the transmission grid 
decreases

 Supply can be replaced by RES in 
the distribution grid

Reactive power 
consumption

Reactive power 
consumption
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Currently, reactive power remuneration does 
not incentivize flexibly supply

110 kV
grid

Medium / 
low voltage 
grid

Transmission
grid

Usage and remuneration of reactive power in Germany

Final customers

 Reactive power tariffs

 No incentive for flexibility

Conventional power plants

 Bilateral contracts for 

reactive power

Renewable Energy Sources

 Obligatory provision

 No incentive for flexibility

Interface TSO / DSO

 Reactive power tariffs

 No incentive for flexibility

Remuneration

Reactive power tariffs exist in the form of penalties for excessive reactive 
power consumption and bilateral contracts.

Which are the benefits from a flexible supply and how can it be remunerated?

Usage

Voltage control
 Reactive power flows along a voltage 

differential
 Voltage increase through feed-in of 

inductive reactive power
 Voltage decrease through feed-in of 

capacitive reactive power

Compensation of transmission equipment
 Transmission lines show a reactive power 

behavior dependent on their load

Reactive power consumption of customers

0% 20% 40% 60% 80% 100%
-10

0

2

-12

4

6

Utilization [%]

380 kV line

380 kV cable

R
ea

ct
iv

e 
p

o
w

er
 c

o
n

su
m

-
p

ti
o

n
[M

va
r/

km
]

Icons made by Freepik from www.flaticon.com

http://www.freepik.com/
http://www.flaticon.com/


TU Dresden, Chair of Energy Economics, Fabian Hinz 5 / 1522.09.2017

Remuneration mechanisms4

Economics of voltage stability3

Model development2

Motivation1



TU Dresden, Chair of Energy Economics, Fabian Hinz 6 / 1522.09.2017

Model developed in order to assess the 
benefits of flexible reactive power

Simplified model formulation of ELMOD AC and ELMOD LinAC

Target function: 𝐌𝐢𝐧  𝒏∈𝑵 𝒄𝒐𝒔𝒕𝒏
𝒎𝒂𝒓𝒈
∙ 𝑮𝒆𝒏𝒏

𝑷

Thermal limit: 𝑳𝒊𝒏𝒆𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝒍 ≤ 𝑻𝒉𝒆𝒓𝒎𝒂𝒍𝒍𝒊𝒎𝒊𝒕𝒍
Voltage range TS: 𝟎, 𝟗𝟕 𝒑. 𝒖.≤ 𝑼𝒏 ≤ 𝟏, 𝟎𝟑 𝒑. 𝒖.
Voltage range DS: 𝟎, 𝟗𝟒 𝒑. 𝒖.≤ 𝑼𝒏 ≤ 𝟏, 𝟎𝟔 𝒑. 𝒖.

Generator capability curve:                                  
𝑮𝒆𝒏𝒏
𝑷,

𝑮𝒆𝒏𝒏
𝑸 ∈

ELMOD ACELMOD LinAC

1) Un / Um... Voltage magnitude at node n / m     Θn / Θm... Voltage angle at node n / m     gn,m / bn,m... Conductance / susceptance between node n and m

GenP

GenQ

Gen𝑛
𝑃 − Dem𝑛

𝑃

=  

𝑚∈𝑁

𝑈𝑛𝑈𝑚 ∙  𝑔𝑛,𝑚𝑐𝑜𝑠(𝜃𝑛−𝜃𝑚)

Gen𝑛
𝑄
− Dem𝑛

𝑄

=  

𝑚∈𝑁

𝑈𝑛𝑈𝑚 ∙  𝑔𝑛,𝑚𝑠𝑖𝑛(𝜃𝑛−𝜃𝑚)

Real power:

Reactive power:
Non-linearities

Gen𝑛
𝑃 − Dem𝑛

𝑃 − Loss𝑛
𝑃

=  

𝑚∈𝑁

 𝑔𝑛,𝑚 𝑈𝑛 − 𝑈𝑚

Gen𝑛
𝑄
− Dem𝑛

𝑄
− Loss𝑛

𝑄

=  

𝑚∈𝑁

 −𝑏𝑛,𝑚 𝑈𝑛 − 𝑈𝑚

Real power:

Reactive power:

Iterative
calculation
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Model applied to 110 kV grid set based on 
OSM data and other public sources

Data set for grid model 

Power plants / RES

Attribution to nodes

 Plants: based on 
addresses and 
coordinates

 RES: based on OSM 
data / RES database

Load

 Attribution based on 
GDP and population of 
surrounding area

Nodes: ~5700
Lines: ~6500
Substations: ~370

380 kV
220 kV
110 kV

OSM data

 Substations
380 / 220 / 110 kV

 Electricity lines
380 / 220 / 110 kV

 Nodes with 
generation and 
demand

 Auxiliary nodes

 Lines start / end, 
technical 
parameters
updated with TSO 
static grid models

 Transformers 
380 / 110 kV
220 / 110 kV
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High wind, high loadLow wind, low load

Availability and usage of reactive power 
depends on grid situation

Potentials estimated with ELMOD LinAC and usage calculated with ELMOD AC

 Large potentials from 110 kV grid
 Potential mostly capacitive due to inductive load
 Usage of inductive potential due to loaded grid

 Small potentials from 110 kV grid (conv. plants)
 Potential inductive due to inductive MV behavior
 Usage of capacitive potential due to idle grid

Legend

Used poten-
tial inductive

Unused poten-
tial inductive

Used poten-
tial capacitive

Unused poten-
tial capacitive

Size of circles proportional 
to control range
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2014 2025 2035

Reactive power supply from decentralized 
sources can save operational cost

Annual savings potential in operational cost through decentralized reactive power sources, in mio. EUR
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 Increasing savings potential in 
delayed grid scenario

 Large savings in redispatch
 Significance of reactive power 

concept increases with delays in grid 
extension

 Higher saving potential when grid extension 
is delayed, especially in combination with 
lignite phase-out

 Savings in redispatch and curtailment

 Certain cost saving 
potential already in the 
status quo

 Savings potential mainly 
from loss reductions
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High savings potential in situations with a 
low residual load

Comparison of reactive power and savings potential per grid situation

Reactive power potential Cost savings potential

Which situations lead to a high need for reactive power from the distribution grid?

 Highest potential between 20% and 40% wind feed-in
 Potential around 0% wind feed-in results from conventional power 

plants in the 110 kV grid
 Above 50% wind feed-in reduced potential due to congestions and 

reaching of voltage limits

 Moderate savings potential in areas of low and medium wind feed-in 
as well as medium and high load

 Largest savings potential at high wind feed-in and low load
 Due to low residual load, only a few conventional power plants are 

dispatched
 Wind turbines provide a sufficient reactive power potential
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Only a small share of potential reactive power 
sources has to be made available

Reactive power control ranges and cost savings under different shares of wind power inclusion
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.] → System cost reductions 
show limited growth

→ 72% of cost reductions 
achieved with a 20% 
share of wind power 
plants

Increasing share of wind 
power plants with 
reactive power control 

→ Aggregated control 
range in Germany 2025 
increases slightly less 
than proportional

How many reactive power sources should be made available?
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Alternative remuneration mechanisms could 
leverage reactive power flexibilities

Alternative remuneration concepts for reactive power

Regulatory

Reactive power obligations and / or tariff 

calculations fixed on a regulatory basis

Obligatory provision

Regulated tariffs1)

 DSOs and large customers can choose
between active and passive participation

 Active participants receive a premium for conform 
and pay a penalty for non-conform behavior

 Scheme for active participants:

U

conform,
premium

non-conform,
penalty

QindQcap

non-conform,
penalty

conform,
premium

Uschedule Tolerance +/- 2 kV

Voltage-based premium

Market-based

Prices are an outcome of an open competition between 

suppliers and demander(s), regulation only determines 

the framework

Bilateral agreement

Long-term tenders2)

 Constitution of short-term markets for reactive 
power similar to electricity markets

 Zonal or nodal market design due to the the local 
nature of reactive power

 TSO could act as auctioneer in a monopsonic
market environment to cover system requirements

 Volatile sources can bid based on their actual 
reactive power potential

Zonal 
layout:

Zone A

Zone B

Zone C

Nodal / zonal spot markets

1) For reactive power reserve or dispatch          2) Only for reserve premium or for reserve premium and dispatch prices  
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Conclusions

Benefits

 Additional reactive power mostly required in 
low residual load situations

 Flexible reactive power from 110 kV RES can 
reduce operational cost up to 40 mio. EUR, 
especially if grid extension is delayed

 Large part of savings can be generated with a 
small amount of sources

Remuneration

 Current mechanisms not sufficient to 
incentivize flexibility

 Regulatory or market-based concepts exist 
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