

Engpassmanagement / Stromüberschuss

aus ökonomischer Sicht eines Entwicklers / IPP

1. ENERTRAG Kurzportrait

ENERTRAG ist ein auf Nachhaltigkeit spezialisiertes europäisches Energieunternehmen.

Im Mittelpunkt steht die zunehmend bedarfsgerechte Gewinnung erneuerbarer Energie:
Strom, Wärme und Treibstoff

Projektierung, Errichtung, Finanzierung und Instandhaltung von Energieanlagen

Entwicklung und Steuerung vernetzter Kraftwerke (z.B. Hybrid-Kraftwerk)

Bau und Betrieb von Stromnetzen

Technologieentwicklung

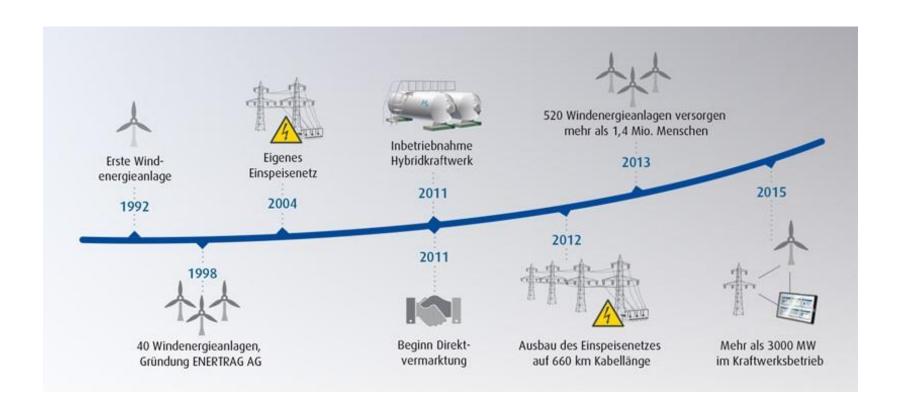
> 1 GW installiert

630 errichtete Anlagen

1.500 betreute Anlagen

900km elektrisches Netz

1,8 Mrd. € investiert


250 Millionen € Jahresumsatz

2,7 Terrawattstunden pro Jahr

460 Mitarbeiter und 15 Auszubildende

1. ENERTRAG Zeitschiene

2. EE Ausbau und Anforderung

Bis 2010 einfach alles einspeisen stabiles System vorhanden

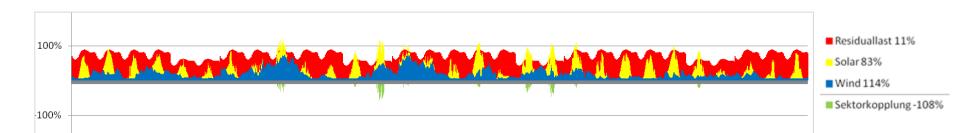
Aktuell Spitzen abregeln Systemstabilität wahren

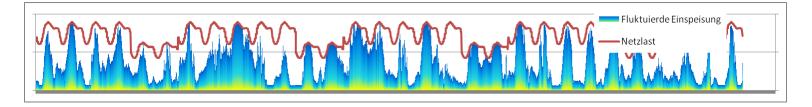
Künftig Spitzenenergie nutzen Systemverantw., Kraftwerksbetrieb

Was fehlt? Fahrplanbetrieb Regelenergie Schwarzstart

Lösung Einspeisenetz Sektorkopplung Akkumulator Primärregell.

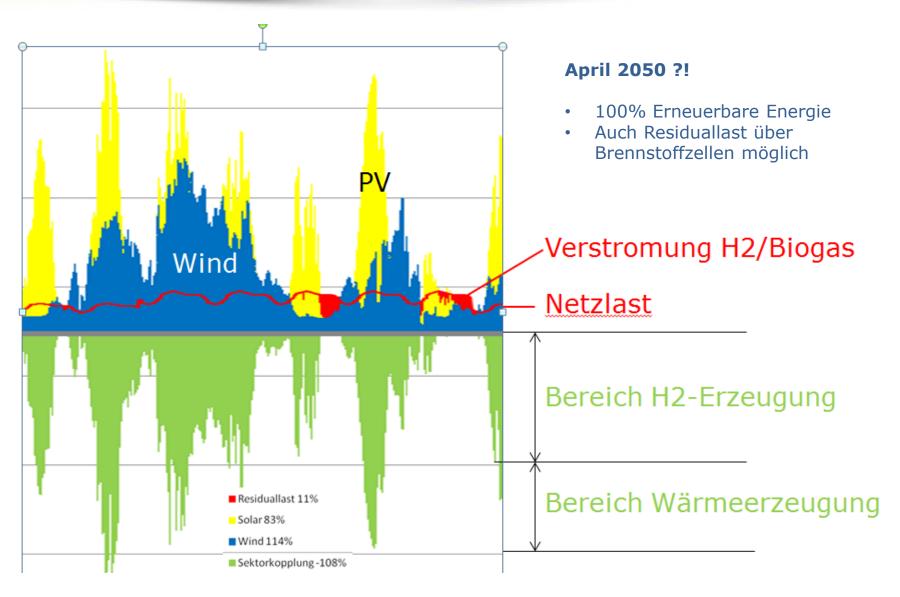
Transformation des gesamten Energiemarktes


- Erneuerbare fluktuierend & mit geringerem Kapazitätsfaktor als konv. Stromerzeugung
 - ⇒ temporärer, aber auch struktureller Überschuss
 - ⇒ Netze und kurzfristige Speicher nicht die Lösung
 - ⇒ Sektorenkopplung und Speicherung in stofflichen Energieträgern notwendig
- Strom über speicherbaren Energieträger Wasserstoff & Wärmespeicher mit Transport- & Wärmesektor verbinden
- Optimierung nach Marktwert im reinen Strommarkt kann zu Fehlanreizen führen;
 Überschussenergie wird zu Grenzkosten per Elektrolyse genutzt


2. EE-Produktion und Stromlast 2015

2015

- "Sektorkopplung" = nur Abregelung!
- Netzausbau noch sinnvoll



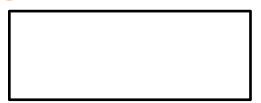
> 2020

- Stromüberangebot: Sektorkopplung wird notwendig
- Netzausbau nützt nichts mehr
- Zubau EE ohne Sektorkopplung nicht mehr möglich

2. EE-Produktion und Stromlast 2050

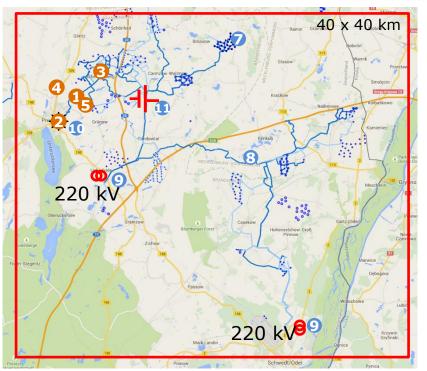
3. ENERTRAG Verbundkraftwerk

Verbundkraftwerke verbinden Erzeugung und Wandlung in speicherbare Energieträger vor dem Netzverknüpfungspunkt miteinander


2 H₂-Gasnetzeinspeisung

5 H2-Flaschenabfüllung

3 H2-Abnehmer (in Verhandlung)


4 Autoladestation (Planung)

Basis

- 7 400 MW Wind
- 8 300 km internes Netz
- 9 UW ggü. ÜNB
- P-to-Heat (Planung)
- Batterie für Primärenergie und Schwarzstartfähigkeit (Planung 20 MW)

Sources: ENERTRAG; Toyota

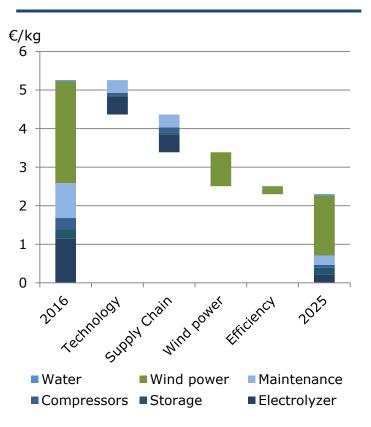
3. Nutzung EinsMan-Energie -> Wärme

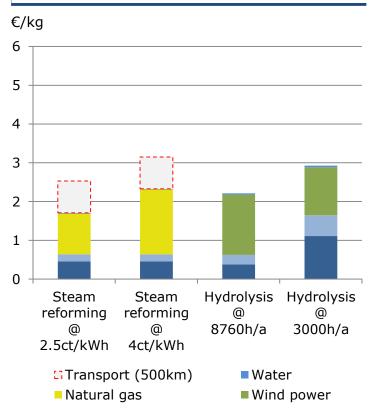
Konzept

- Überschuss => Betrieb nur bei EinsMan
- <u>Vor Netzverknüpfungspunkt</u> => Direktleitung aus unserem Einspeisenetz
- <u>Wärmemarkt</u> => 10 MW "Tauchsieder" in das vorhandene Fernwärmenetz der Stadtwerke Prenzlau
- <u>keine Verdrängung</u> von anderen elektrischen Verbrauchern
 - => Einkommensneutralität des EEG-Topfes und somit keine "Entsolidarisierung"
- Beibehalten der <u>Härtefallentschädigung</u> (ggf. unter Teil-Anrechnung von Erlösen)
 - => Wärmeproduktion (bei Alternativkosten von 1-2 ct/kWh nur bei Befreiung von der EEG-Umlage möglich)

Regulatorischer Stand

- Gesetz spricht zu EinsMan von "regeln";
 - ÜNB und BNetzA verstehen "regeln" = "drosseln"
 - ENERTRAGs Meinung, "regeln" = "Einspeiseleistung am Netzverknüpfungspunkt verringern"
- Ob EEG-Umlage auf den Strom zu zahlen ist, noch nicht abschließend geklärt
- Im Netzausbaugebiet soll PtH als zuschaltbare Last kontrahiert werden können (nur in Verbindung mit KWK-Anlagen, die dann bei Zuschaltung runtergefahren werden). Die Zuschaltung würde dann vor EinsMan anwendbar sein.


4. Wasserstoff-Wettbewerbsfähigkeit


H2-Verbrauch Brennstoffzellenfahrzeug: 0,7-1 kg H2/100 km = aktuell 3,9-5,5 €/100 km

=> Wenn Nachfrage ansteigt, Alternativnutzung bei sinkendem Strompreis (hoher Volllast)

Significant cost reductions expected for Power-to-Hydrogen

..and cost parity with fossil based hydrogen in sight within 5-7 years

Sources: ENERTRAG analysis

5. Fazit

Energiewende bedeutet

- Immer mehr Energieanlagen erzeugen <u>ohne Grenzkosten</u> und verdrängen Anlagen mit hohen Grenzkosten (Gaskraftwerke, Steinkohle, KWK).
- Das Stromangebot übersteigt die zeitgleiche Stromnachfrage immer öfter und immer stärker (bis letztlich zum 10-fachen)
- Gleichzeitig entfällt die gewohnte Speicherung von Kohleenergie in der Nacht (Pumpspeicher, Nachtspeicherheizung) statt Tagesspeicher werden nur noch saisonale Speicher benötig: Pumpspeicher werden unwirtschaftlich.
- Die Notwendigkeit aus 1000 4000 Volllaststunden erneuerbarem Energieangebot bedarfsgerechte Stromlieferung zu machen hat einen wichtigen Nebeneffekt: Durch die Nutzung der <u>Erzeugungsspitzen für Mobilität und Wärme</u> können auch diese Energiebereiche komplett auf erneuerbare Energieträger (Wasser und H2) umgestellt werden.
- <u>Verbundkraftwerke</u> sind die Antwort auf die Frage, wie sieht unser Energiesystem nach der Energiewende aus.
- Es bedarf <u>regulatorischer Anreize</u>, die Schaffung von (gesamtkostenneutralen) Verbundkraftwerken zu fördern.

Vielen Dank für Ihre Aufmerksamkeit!

Simon Hagedorn

Leiter Portfoliosteuerung / M&A Simon.Hagedorn@enertrag.com Tel. +49 (0)39854 / 6459-373

ENERTRAG Aktiengesellschaft

Büro Berlin: Friedrichstrasse 152, 10117 Berlin