

An Economic Analysis of the German Secondary Balancing Power Market

Strommarkttreffen, 22.01.2016 in Berlin (Acatech)

Fabian Ocker E-Mail: Fabian.Ocker@kit.edu

Institute for Economics - Prof. Dr. Karl-Martin Ehrhart

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Research Motivation

- Germany faces the "Energiewende" with various implications
 - Variable Renewable Energy Soruces cover about 60% of energy supply in 2050 (Federal Ministry for Economic Affairs and Energy)
 - That is leading to a less predictable energy supply
 - Ancillary services, such as balancing power, become more important
 - Market mechanism: multi-attributive public procurement auctions

Related research

- Profit maximization in electrical (balancing) power auctions (Bushnell and Oren, 1994)
- Scoring and pricing rules in energy markets (Chao and Wilson, 2002)
- Discussion of pricing rules in the German balancing power markets (Müsgens, Ockenfels and Peek, 2014)
- Renwable Energy Sources and balancing power markets (Hirth and Ziegenhagen, 2015)

Research questions & related own work

How is the German market for balancing power market designed?

Ocker, F., Ehrhart, K.-M., Ott, M. (2015): "An Economic Analysis of the German Secondary Balancing Power Market", Working Paper (under review).

How do suppliers behave within the current market design?

- Ocker, F., Ehrhart, K.-M. (2015): "The "German Paradox" in the Balancing Power Markets", Working Paper (under review).
- Belica, M., Ehrhart, K.-M., Ocker, F. (2016): "Profits and Efficiency in the German Secondary Balancing Power Auction – A Game-Theoretical Analysis", Working Paper.

What alternative German market designs are discussed?

Ocker, F., Belica, M., Ehrhart, K.-M. (2016): "Die "richtige" Preisregel für Auktionen – eine theoretische und empirische Untersuchung (inter-)nationaler Regelleistungsmärkte", 14. Symposium Energieinnovation Graz, 12.-14. February 2016.

How are other European balancing power markets designed?

Ocker, F., Braun, S., Will, C. (2016): "Design of European Balancing Power Markets", Working paper (under review).

Basics of the current German Secondary balancing Power (SR) Market

Theoretical Findings

Empirical Findings

International Balancing Power Markets

Basics of the current German SR-market (1/3)

- Net frequency needs to be constant (in Germany 50 Hz)
- In order to balance volatile energy production, an ancillary service for the German energy grid is needed: balancing power (reserve power)
 - Positive: energy is supplied to energy grid
 - Negative: energy is taken from energy grid
- Market mechanism used by transmission system operators (TSOs): public procurement auction (prequalification is required)
- Three different reserve power markets/qualities: Primary (PR), Secondary (SR) and Minute Reserve (MR)
- Two weekly time slots for SR: 8am-8pm (main period), else (sub-period)

Basics of the current German SR-market (2/3)

- Weekly repeated auction with nearly same suppliers (around 30)
- A complete bid consists of three components: power offer [MW], power bid [€/MW], energy bid [€/MWh]
- Activation strategy: merit-order of energy bids
- Scoring rule: <u>only</u> power bid, in increasing order until demand is met
- Pricing rule: Pay-as-bid (PaB) for both the power and energy bid
 - Federal Ministry for Economic Affairs and Energy (BMWi, 2016) & Müsgens, Ockenfels and Peek (2015):

"Changing the pricing rule (without changing the scoring rule) to uniform pricing (UP) will incentive suppliers to bid their true costs (incentive compatible) and market results will be more efficient"

Basics of the current German SR-market (3/3)

- Two types of costs
 - Capacity costs costs for keeping balancing power available
 - Calling costs costs for providing balancing energy
- Positive/negative SR require different operation modes
 - Pos. SR: power plant running at/less than $P_{max} q$
 - Neg. SR: power plant running at least at $P_{min} + q$
- Energy can be traded at alternative energy markets: if the variable costs VC of a power plant are less than relevant market price w, an operator participates at that energy market
 - Inframarginal power plant: VC < w (opportunity costs!)</p>
 - Extramarginal power plant: VC > w

Theoretical Findings – Decision-theoretic model (1/3)

- How should "rational" bidders behave under different market designs?
- **I. Current market design** (PaB for power & energy bid)
 - Power bid = capacity costs expected profits of the energy bid + "mark-up"
 - Energy bid = callings costs + "mark-up"

II. UP for power bid & PaB for energy bid

- Power bid = capacity costs expected profits of the energy bid
- Energy bid = callings costs + "mark-up"

III. PaB for power bid & UP for energy bid

- Power bid = capacity costs expected profits of the energy bid + "mark-up"
- Energy bid < callings costs</p>

IV. UP for power & energy bid

- Power bid = capacity costs expected profits of the energy bid
- Energy bid < callings costs

Theoretical Findings – Decision-theoretic model (2/3)

- The current markt-design is not incentive compatible
 - Bidders exaggerate their costs to generatre profits (due to PaB)
 - Bidders include the expected profits of the energy bid into the power bid (scoring rule is not changed!)
- Changing the pricing rule to UP will not improve the incentive structure
 - Expected profits of the energy bid are still considered for the power bid
 - The "goods" in the merit-order of the energy bids are not homogenous (the lower the position, the higher the probability for delivering balancing energy)
 - Bidders have incentives to be positioned at the front of the merit-order by reducing the energy bid below their calling costs
- General remarks on UP for the energy bid
 - What bid/price is determining the uniform price (last called energy bid)?
 - How many uniform prices will be introduced (one per week/day/hour)?
 - How to face "strategic bidding"?

Theoretical Findings – Game-theoretic model (3/3)

- There is an unique symmetric Bayes-Nash bidding equilibrium in both the current positive and negative SR-market (one shot-auction)
- In the equilibrium of the current market-design, the following hold
 - Profits at the SR-market are higher than at the spot-market
 - The higher the variable costs, the lower the profits at the SR-market
 - The higher the number of suppliers, the lower the profits at the SR-market
 - The auction outcome is efficient: suppliers with the lowest capacity costs will be selected for the SR-market and suppliers with the lowest calling costs will be used for providing balancing energy the most
- Assuming sufficient supply of "spinning reserve", the positive and the negative markets differ substantially
 - Pos. Market: opportunity costs for not trading at another energy market
 - Neg. Market: <u>no</u> opportunity costs, but possible double compensation

Empirical findings – the "German Paradox" (1/7)

The "German Paradox" in the balancing power markets:

"Despite the increasing energy supply of variable renewable energy sources, the demand for balancing power in Germany is declining" (Hirth, L. and Ziegenhagen, I., 2015)

- Why is that?
- **TSO** cooperations lower balancing power demand in Germany
 - National: German TSOs introduced the "Netzregelverbund" in 2009
 - International: German TSOs joined the "International Grid Control Cooperation (IGCC)" in 2011
- Adaptations in the German energy markets were undertaken
 - Higher trading flexibility in the Intraday-market (15min since 09/2011)
 - Introduction of the 15min day-ahead market in 12/2014

Empirical findings – SR demand (2/7)

Institute for Economics

Empirical analysis – pos. SR power bids (3/7)

Mean weighted power bid (published by TSOs) (January 2012 - December 2014, 153 auctions)

-SR pos. main period -SR pos. sub-period

Empirical analysis – SR demand and power bids (4/7)

scatterplot PRICES and DEMAND POS MAIN

Scatter plots of pos. SR demand and SR prices (mean weighted power bids)
Expected: "The higher the SR demand, the higher the SR prices"

Pos. SR main period: $r_s = -0,237$

Pos. SR sub-period: $r_S = -0,299$

scatterplot PRICES and DEMAND POS SUB

 \rightarrow No positive correlation for SR demand and prices found – why?

Empirical analysis – SR demand and power bids (5/7)

- Framework conditions were "stable" (supplier side, sport market price)
- Seperating the time period into two sub-periods:
 - Sub-period 1 (SP 1): January 2012 June 2013
 - Sub-period 2 (SP 2): July 2013 December 2014
- Then, significant positive-monotonic relationships are revealed:

Considered periods	r _s	Ø Price	Ø Demand
Main period: SP 1	+ 0,410 ***	170 €/MW	2129 MW
Main period: SP 2	+ 0,560 ***	561 €/MW	2077 MW
Sub-period: SP 1	+ 0,264 **	393 €/MW	2124 MW
Sub-period: SP 2	+ 0,210 *	808 €/MW	2077 MW

*** p-value < 0,001, ** p-value < 0,01, * p-value < 0,05

Hypothesis: coordination of the suppliers on a higher price level

Empricial analysis – orientation of suppliers (6/7)

- SR prices are very complex/unsteady from suppliers' perspective
- How can suppliers cope with such a high degree of uncertainity?

Hypothesis: suppliers orientate towards former auction results

Durbin-Watson autocorrelationtest reveals significant results for the mean-weighted power bids in the positive SR-markets up to the fifth lag

 \rightarrow suppliers orientate towards the last five auction results

Empirical analysis – SR energy bids (7/7)

International Balancing Power Markets

- Empirical analysis of all 24 European countries that procure balancing power with public procurement auctions
- We find that ...
 - 19 countries use the "three-quality" pattern (PR/SR/MR)
 - 23 countries generally distinguish positive from negative balancing power
 - the scoring rule (winner determination) is either based on the power & energy bid, only the power bid or by considering additional factors
 - different pricing rules are applied: 10 countries use UP, 12 countries use PaB, 2 countries use combinations of UP and PaB
 - countries with a high share of renewable energy sources use more short-term and flexible auction designs (duration, frequency, prequalification)
 - the transperancy of the European markets leaves room for improvement
 - there exist TSO cooperations in central and northern Europe
 - \rightarrow Still a long way to a common European Balancing Power Market!