Electricity and Gas Market Design to Supply the German Transport Sector with Hydrogen

Martin Robinius, Leander Kotzur, Sebastian Schiebahn, Thomas Grube, Detlef Stolten

m.robinius@fz-juelich.de

Strommarkttreffen zum Thema "Marktdesign", 13. Mai in Berlin

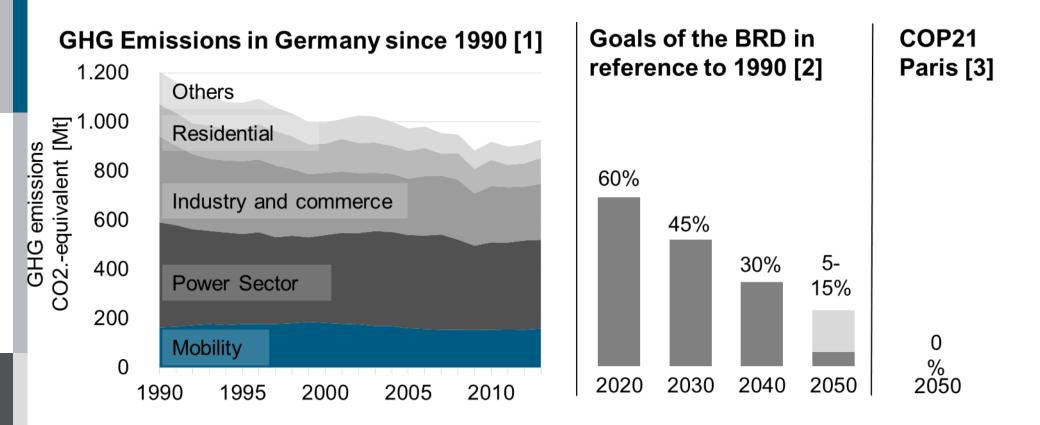
Table of Contents

Introduction:

- Status greenhouse gas (GHG) emissions
- Timeline for energy research
- Status fuel cell vehicles

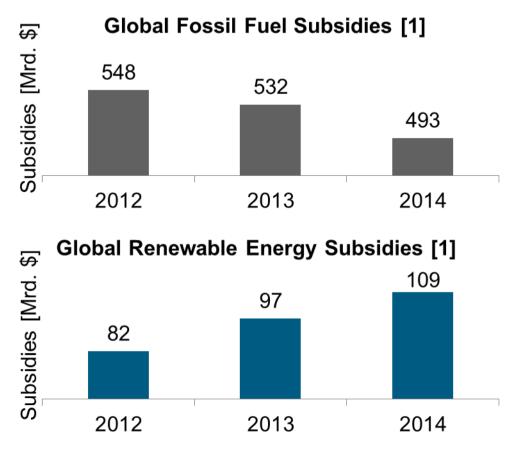
The Year 2050 – Energy Concept 2.0 –:

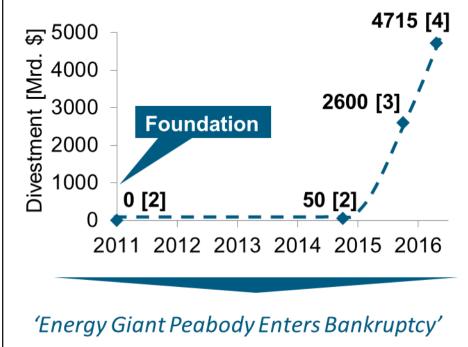
- Installed capacity RES
- Surplus power analysis
- Potential hydrogen demand
- Dedicated hydrogen pipeline grid
- Pre-tax cost analysis


The Markets and Share- and Stakeholder

Mass Market Introduction of Hydrogen:

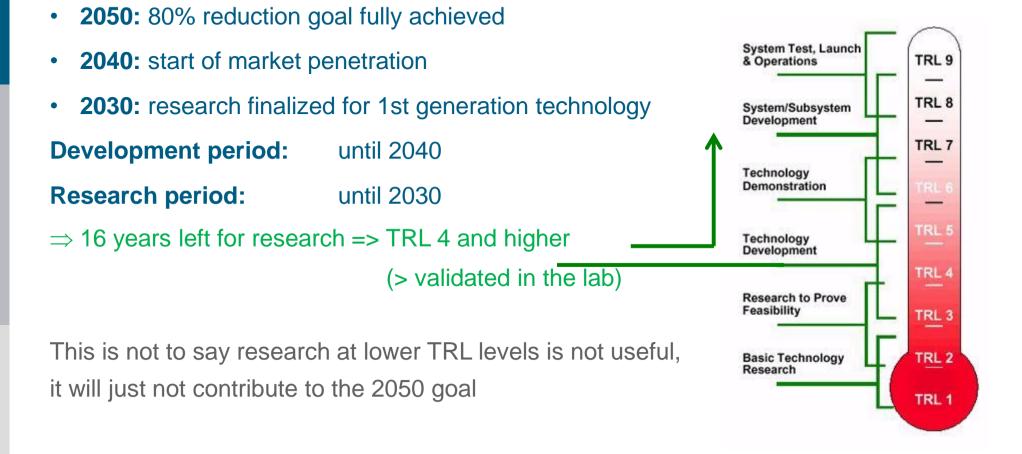
Conclusion


The Overall GHG Emission Goals of the German Government Require a Holistic Transformation of all Sectors



Transition of Financial Interests from Fossil Energies towards Renewable Energies

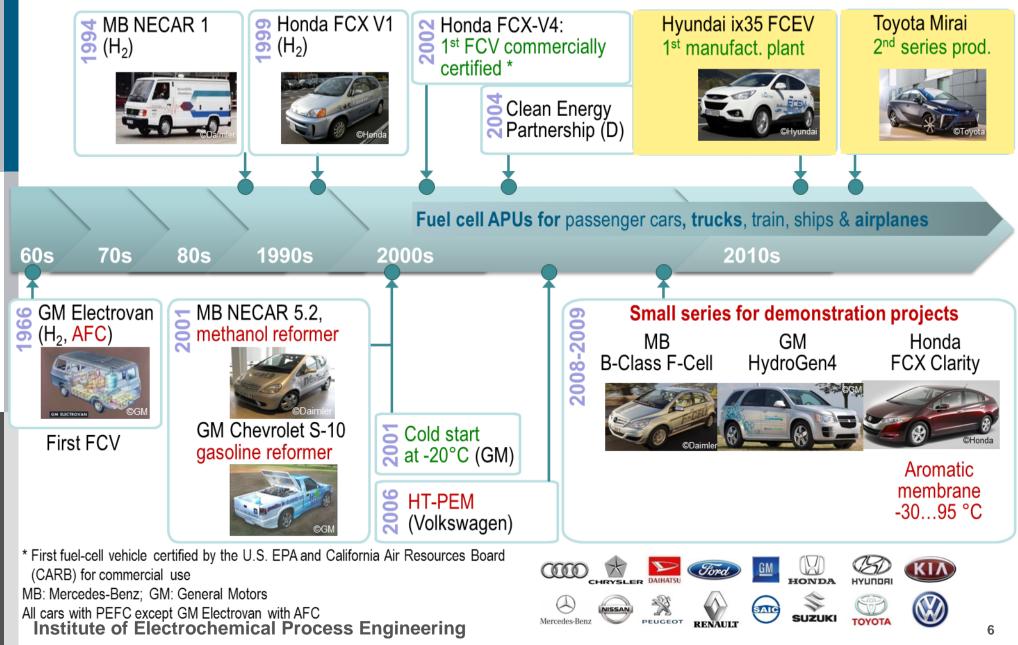
Committed Fossil-Free Assets of the Divestment Movement Worldwide


- Wall Street Journal (13/04/2016)

- [1] International Energy Agency, World Energy Investment Outlook, 2014,
 - URL: https://www.iea.org/publications/freepublications/publication/WEIO2014.pdf
- [2] Arabella Advisors, Measuring the Global Divestment Movement, 2014,
 - URL: http://www.arabellaadvisors.com/wp-content/uploads/2014/09/Measuring-the-Global-Divestment-Movement.pdf
- [3] Arabella Advisors, Measuring the Growth of the Divestment Movement, 2015,

URL: http://www.arabellaadvisors.com/wp-content/uploads/2015/09/Measuring-the-Growth-of-the-Divestment-Movement.pdf

[4] DivestInvest, URL: http://divestinvest.org/individual/ (access date: 19/04/2016, 4:30 pm)


Timeline for Energy Research and Deployment to Meet the 2050 Goals

TRL: Technology Readiness Level; cf. h2020-wp1415-annex-g-trl_en.pdf; issued by EU Institute of Electrochemical Process Engineering **I ICH**

FCV Market Introduction has Started

Select Improvements Hydrogen can Deliver on

Worldwide:

Reduction of CO _{2eq} emissions: mitigation of sea level rise, future storm intensity, floods, droughts etc. Impact on all countries; high vulnerability of lower income countries

Middle income countries*, particularly upper middle income countries:

PM10, PM2.5, NO_x, SO₂, etc., particularly in sprawling urban centers; change of attitude with upper and middle class city dwellers & expatriates (e.g. China), change of policies (e.g. China)

Yet there are still massive emissions issues in High income countries: NO_x (and hence O_3), PM10, PM2.5 in urban centers

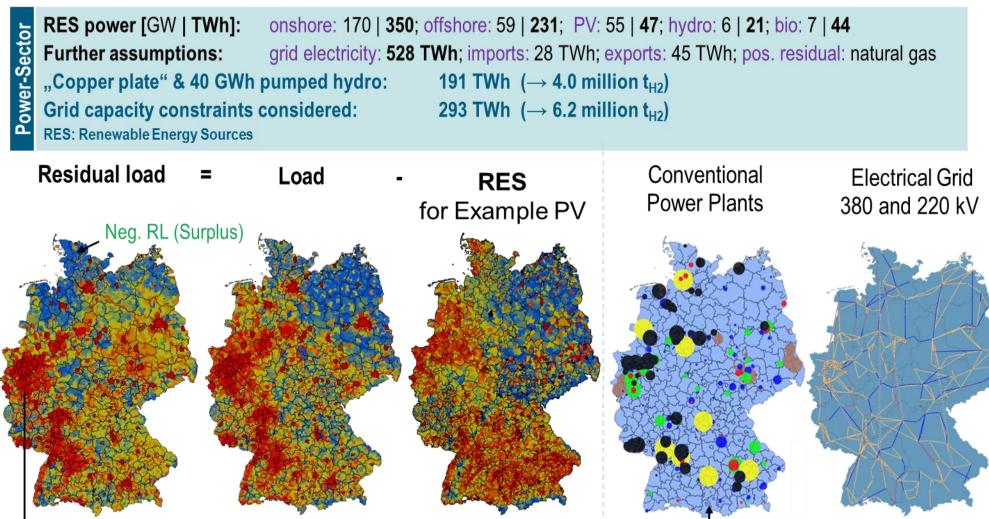
Low income countries:

Hardly accessible with new expensive technology, particularly if massive infrastructure is needed Example: more people own cell phones worldwide than have access to toilets**

The world is very diverse and bears stunning discrepancies This study focuses on Germany as a starting point

& is going to be extended to further countries

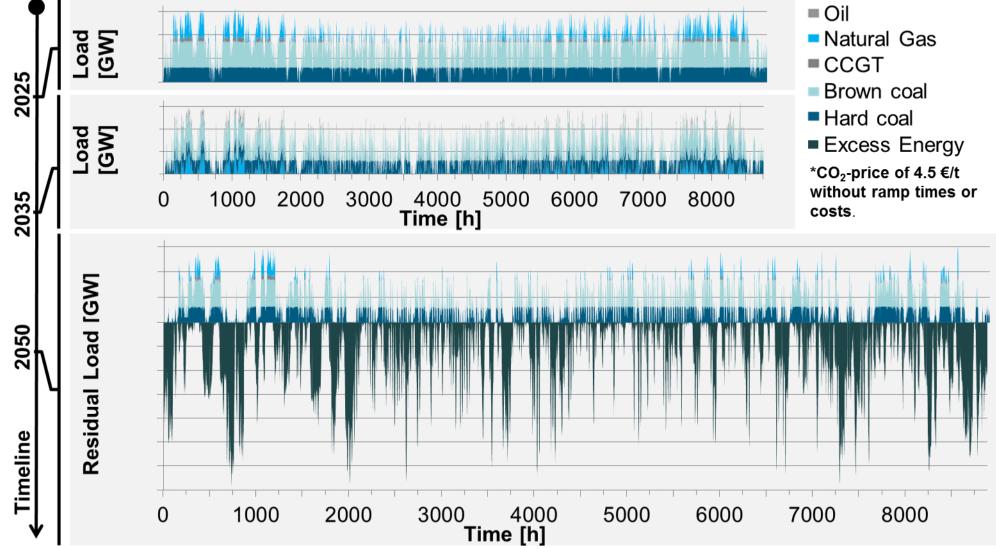
* World Bank classification; comparison of classifications cf. IMF working paper WP/11/31; Lynge Nielssen 2011 ** http://www.un.org/apps/news/story.asp?NewsID=44452&Cr=sanitation&Cr1=#.UU_G_BySV3-



The Year 2050

The Year 2050 – Energy Concept 2.0

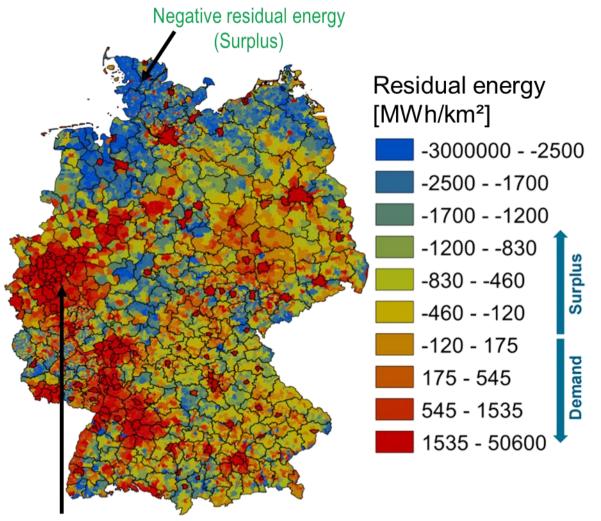
Assessment based on municipal level and an hourly resolution of grid load and RES feed-in

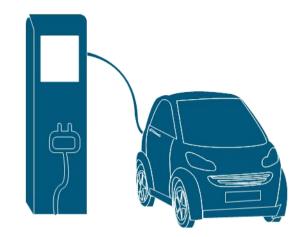


Positive residual load

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1

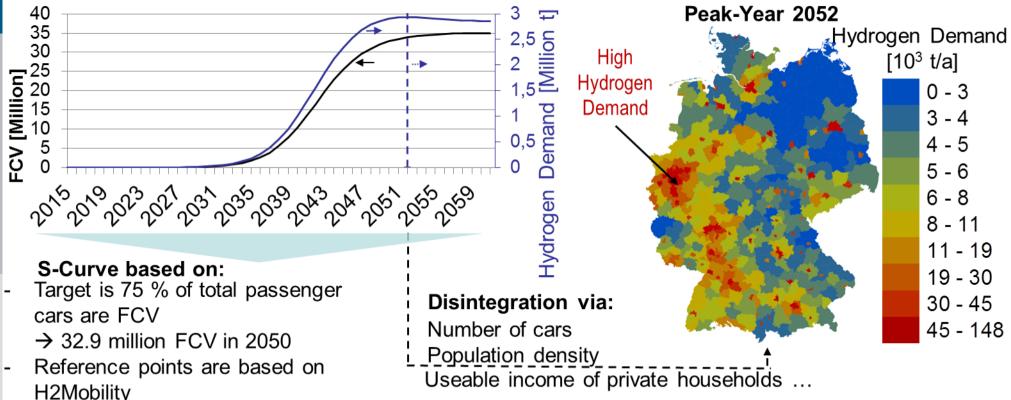
Effect of a Renewable Energy Scenario on the Operation of Conventional Power Plants*




Installed capacity regarding to [1] Übertragungsnetzbetreiber (2015): Netzentwicklungsplan Strom 2025 [2] Bartels, S (2016): Simulationsmodell regional aufgelöster Residuallasten in Deutschland, Masterthesis [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff.

Linking the Power and Transport Sector

H


Positive residual energy

Energy Concept 2.0

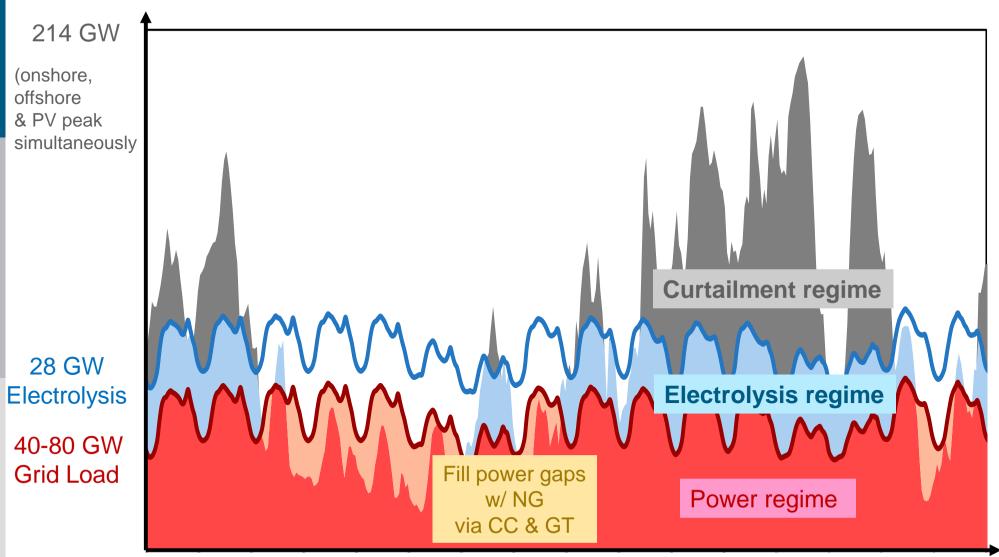
Assessment based on counties level

FCV [kg/100 km]: $0.92 (2010) \rightarrow 0.58 (2050) [1]$, linear decreaseFCV fleet:curve fit; until 2033 according to [2]; maximum share in 2050: 75 % of German fleetFurther assumptions:14,000 km annual mileage 12 years lifetime; total vehicle stock: 44 million carsPeak annual H2 demand:2.93 million tH2 (2052) (Surplus 2050 Copper plate scenario $\rightarrow 4.0$ million tH2

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff and Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Straßenverkehr, to be published except: [1] GermanHy (2009), Scenario "Moderat" [2] H2-Mobility, time scale shifted 2 years into the future [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des

Institute of Electrochemical Process Engineering deutschen Straßenverkehrs mit Wasserstoff.

Energy Concept 2.0



Assessment based on counties level

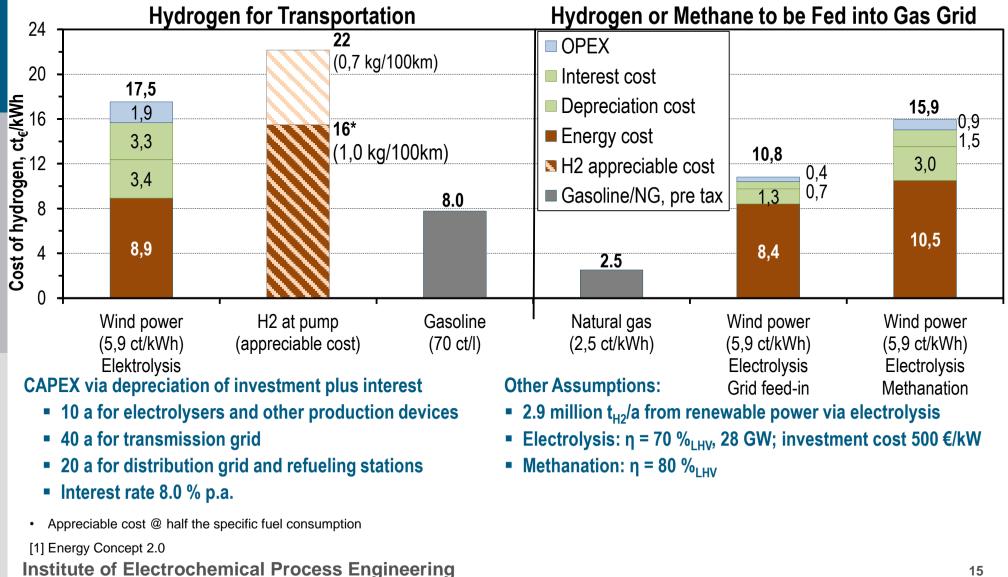
H ₂ sources: H ₂ sinks: H ₂ storage: Pipeline invest [3]: Electricity cost: Total H ₂ cost (pre-tax):	9,968 refueling stations 48 TWh (incl. 60 day reso 6.7 billion € (12,104 km LCOE Onshore: 5.8 ct/k)	transmission grid); 12 billion € (29,671 km distribution grid)
Neg. RL (Surplus)	T-Pipelineabschnitt	Heide Heide Etzel Jemgum
 Transmission Hubs Distribution 		 Electrolyzer Node Electrical line Countie with surplus

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1; except: [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Forschungszentrum Jülich IEK-3 [4] Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Institute of Electrochemical Process Engineering

Principle of a Renewable Energy Scenario with Hydrogen Hydrogen as an Enabler for Renewable Energy

* based on Robinius, M. (2016): Strom- und Gasmarktdesign zur

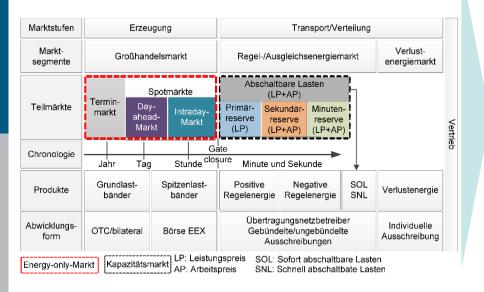
Institute of Electrochemical Process Engineering

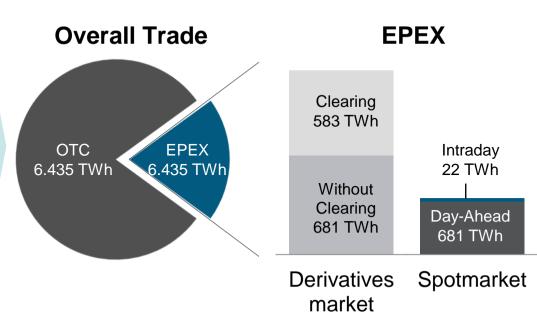

Versorgung des deutschen Straßenverkehrs mit Wasserstoff. PhD thesis

LICH

Cost Comparison of Power to Gas Options – Pre-tax

Hydrogen for Transportation with a Dedicated Hydrogen Infrastructure is Economically Reasonable





The Markets and Share- and Stakeholder

Electricity Market Description of the current state:

Analysis of alternative market designs:

Capacity markets & congestion management

Choice of suitable market designs:

- Integrated energy market design: If required: electrolysis units can reduce their promised load and safe achievement certificates
- Zonal or nodal pricing: Local price signals, in comparison to the actual copper plate model "Grid expansion is required for the preservation of a single price zone" [1]

[1] Ein Strommarkt für die Energiewende (Weißbuch). Ergebnispapier des Bundesministeriums für Wirtschaft und Energie Juli 2015, S. 19.
 [2] Wend, A., Modellierung des deutschen Strommarktes unter Verwendung der Residuallast, in Institut für Brennstoffzellen. 2014, RWTH Aachen. [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. PhD thesis Institute of Electrochemical Process Engineering

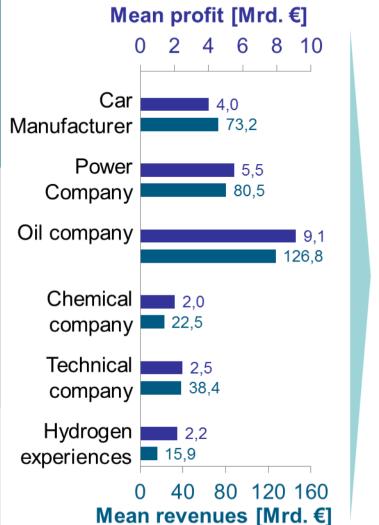
Gas Market

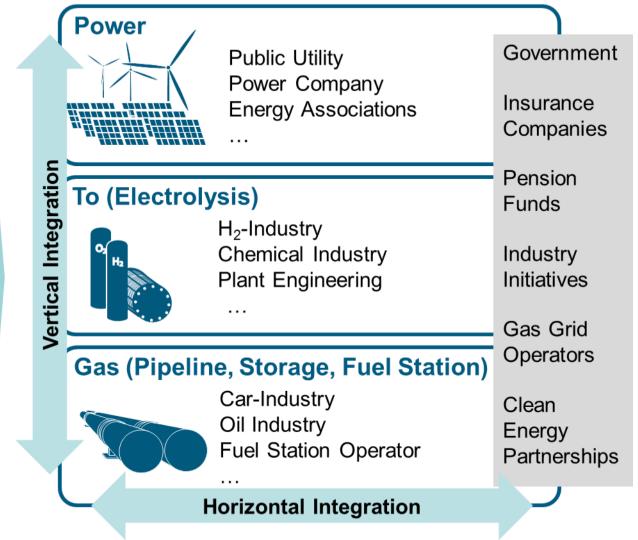
Description of the current state :

- Worldwide analysis of hydrogen market:
 - Hydrogen production from 45 to 65 million tons per year
 - 48% from natural gas steam reforming
 - 4% from alkaline electrolysis
 - No market for the hydrogen supply of Fuel Cell Vehicles (FCV)
 - German natural gas market as reference market

Analysis of alternative market designs:

- Contract-Path-Model
- Bathtub-Model
- Control-Area-Model


Choice of suitable market designs:

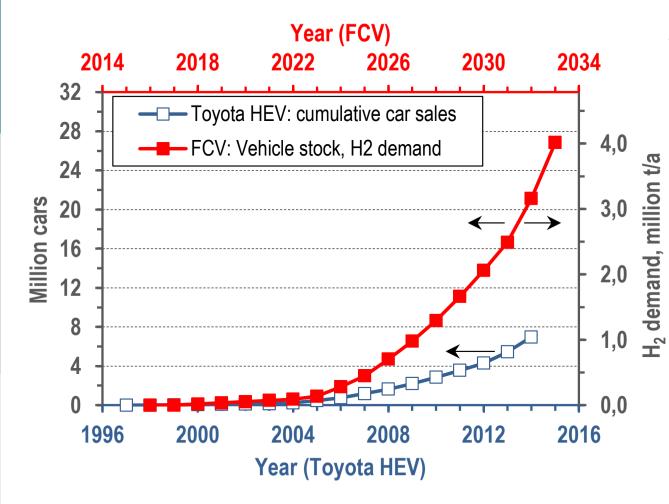

- Contract-Path-Model: Effective during pipeline development due to specific source-sink relations
- Entry-Exit-Model: Comparable to natural gas market, reasonable for highly meshed grids

[1] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. PhD thesis **Institute of Electrochemical Process Engineering**

Share- and Stakeholer Analysis

Industry co-operations can accelerate the development of an hydrogen infrastructure

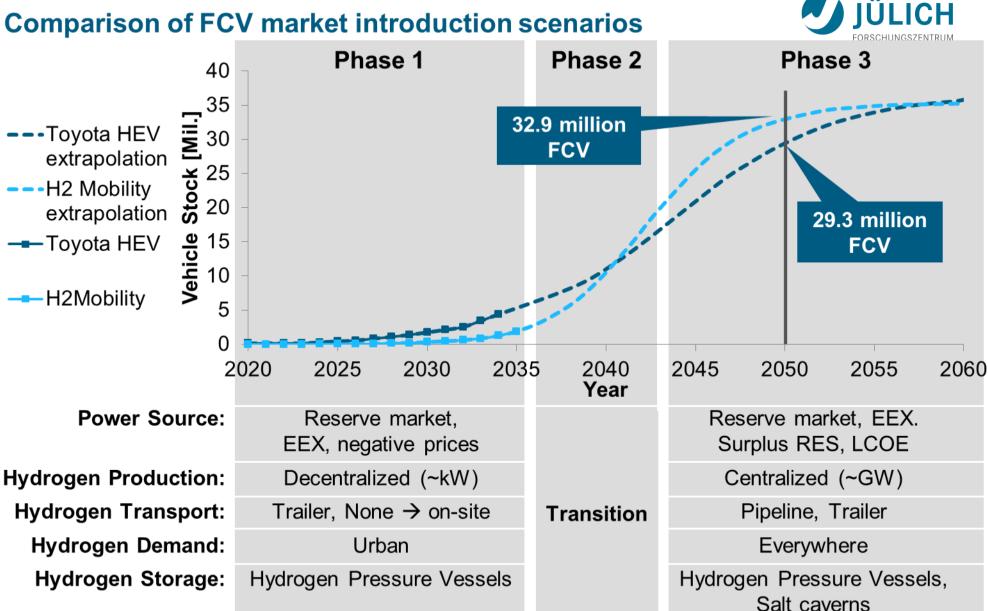
[1] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. PhD thesis **Institute of Electrochemical Process Engineering**


Mass Market Introduction of Hydrogen

No Barrier, just a Challenge

Estimated Worldwide Fuel Cell Car Population Build-up Energy Concept 1.0

Based on Toyota's Hybrid Cars / Assuming Fourfold Build-up-power for FCV Cars


Assumptions

(based on Toyota HEV data [1])

- the same market penetration
- four-fold sales (four OEMs: Daimler/Ford, Honda/GM, Hyundai, Toyota)
- Vehicle lifetime of 10 years considered
- FCV with fleet average (cars, light trucks and busses) according to GermanHy: 1.17 kg (100 km)⁻¹ fuel use 15,170 km a⁻¹ annual mileage
- Passenger cars (GermanHy):
 1.0 kg (100 km)⁻¹ fuel use
 14,900 km a⁻¹ annual mileage, mix of gasoline and diesel cars

[1] **Hirose (2014)**: *Toyota's Effort toward Sustainable Mobility 2015 FCV and Beyond*. In Proceedings: 20th World Hydrogen Energy Conference 2014, Gwangju, Korea.

Comparison of FCV market introduction scenarios

Energy Concept 2.0 (H2Mobility): Target is 75 % of total passenger cars are FCV, Fuel consumption improves over time, Reference points are based on H2Mobility; Energy Concept 1.0 (Toyota): Target 2050 is based on available hydrogen, fuel consumption assumed constant, Institute of Electrochemical Process Engineering Reference points are based on development of Toyota HEV 22

FCV Market Introduction in Germany 2.0 ÜLICH H₂-cost evolution for full-fledged transmission grid, with demand-driven installation of electrolysers, storage capacities, distribution grid and fueling stations; **Pre-tax** based on H2Mobility — extrapolation - – H2 demand - total H2 cost - fast - total H2 cost - slow 60 Cost brake-down 5 linear growth at 100 % of refueling stations 50 O&M 4 2050: Growth of refueling stations Vehicle stock, million million t/a Total cost, ct/kWh Capital charge proportional to H₂ demand 2.9 million t of H₂ 40 **Capital** 3 Feedstock break-even 30 demand, pre-tax Gasoline (reference) 22 (at 0.7 kg/100km) 2 allowable pretax 20 17.5 (total) **16** (at 1.0 kg/100km) \sim L cost range 1.9 3.3 3.4 10 **Economical investment** 8.9 8.0 0

2040

2050

2060

Year Institute of Electrochemical Process Engineering

2020

2030

2010

FCV Market Introduction in Germany 2.0 IÜLICH H₂-cost evolution for full-fledged transmission grid, with demand-driven installation of electrolysers, storage capacities, distribution grid and fueling stations; **Pre-tax** based on H2Mobility — — extrapolation - – H2 demand - total H2 cost - fast - total H2 cost - slow 60 Cost brake-down 5 at 100 % break-even incl. tax 50 O&M 4 2050[.] Vehicle stock, million million t/a Total cost, ct/kWh Capital charge 2.9 million t of H_2 40 total cost **Capital** range incl. tax 32 3 Feedstock 30 demand, Gasoline (reference) 22 (at 0.7 kg/100km) 2 allowable pretax 20 17.5 (total) **16** (at 1.0 kg/100km) \sim L cost range 1.9 3.3 3.4 10 8.9 8.0 0 2020 2040 2050 2010 2030 2060 Year

Conclusion

Fuel cell vehicles are at the brink of market introduction; main remaining issues are

Cost & Durability

Use of gaseous hydrogen at 700 bar as a transportation fuel represents a robust strategy

- · Methanol and gasoline Fcs with reforming have been explored
- Liquid hydrogen has been explored
- 350 vs. 700 bar units have been explored
- Hydrogen as a transportation fuel is much more cost-effective than for stationary use
- · Hydrogen as a fuel will be cost effective enough to allow for taxation
- · A hydrogen infrastructure will need tax breaks in the early stages

Hydrogen fuel for transportation is an enabler for renewable energy owing to its storage option & transportation represents a high-price sink

For sake of cost effectiveness and energy efficiency energy strategies are to be cast across the traditional sectors of

- Power supply & transportation
- Residential energy supply
- Industry

The infrastructure for FCVs has been proven to be no impediment

Feasibility of energy strategies includes proof of

Physics, technology, economics (micro- and macro-economics), acceptance

Thank You for Your Attention

Prof. Dr. Detlef Stolten Institutsleiter IEK-3 d.stolten@fz-juelich.de

Dr. Bernd Emonts Wiss. Koordinator & Stellvertreter b.emonts@fz-juelich.de

Dr. Martin Robinius Abteilungsleiter VSA m.robinius@fz-juelich.de

Dr. Thomas Grube Gruppenleiter Mobilität th.grube@fz-juelich.de

Dr. Sebastian Schiebahn Power-to-Gas s.schiebahn@fz-juelich.de

Dr. Alexander Otto CCU und Industrie a.otto@fz-juelich.de

Institute of Electrochemical Process Engineering

Vanessa Tietze Wasserstoffinfrastruktur v.tietze@fz-juelich.de

Dr. Dr. Li Zhao Post-Combustion Capture I.zhao@fz-juelich.de