What can transmission do for a renewable Europe?

Sarah Becker

with Rolando A. Rodriguez, Gorm B. Andresen, Martin Greiner, and Stefan Schramm

(then) FIAS Frankfurt, Frankfurt University, Germany
(now Fraunhofer IWES and Kassel University)

and

Renewable Energy Systems Group, Aarhus University, Denmark

February 19, 2016
1. Overview

2. Data and Methodology
 - Weather-driven electricity generation
 - Growth of wind and solar installations
 - DC power flow
 - Benefit of transmission
 - Quantile caps

3. Network evolution
 - Grid
 - Total line investments

4. Import/Export
 - Examples

5. Shift of optimal mix
 - End-point mixes
 - Shift
 - Linecaps

6. Conclusions
Weather-driven electricity generation

Generation from weather data

Mismatch to load

\[\Delta_n(t) = \gamma_n \left(\alpha_n^{W} W_n(t) + (1 - \alpha_n^{W}) S_n(t) \right) \langle L_n \rangle - L_n(t) \]

\(\Delta_n \) – mismatch at node \(n \), \(L_n \) – load, \(W_n \) – norm. wind generation, \(S_n \) – norm. solar PV generation, \(\gamma_n \) – gross VRES share, \(\alpha_n^{W} \) – relative wind share
Logistic fit

Logistic growth function: \[f(y; y_0, a, b, m) = \frac{a \cdot b \cdot e^{m(y-y_0)}}{a(e^{m(y-y_0)}-1)+b} \]
End-point mixes

![Graph showing the relationship between End-point mixes and backup energy (normalised)].

- **Mix α_W**: Represents the mix ratio of different energy sources.
- **Backup energy (normalised)**: Indicates the normalized backup energy for different mixes.
- **+1 % bal., PV**: Represents a backup energy increase of 1% for PV.
- **+2 % bal., PV**: Represents a backup energy increase of 2% for PV.
- **+5 % bal., PV**: Represents a backup energy increase of 5% for PV.
- **+1 % bal., wind**: Represents a backup energy increase of 1% for wind.
- **+2 % bal., wind**: Represents a backup energy increase of 2% for wind.
- **+5 % bal., wind**: Represents a backup energy increase of 5% for wind.

Sarah Becker
European transmission grid
DC power flow

Given Δ_n for all nodes n, solve for F:

\[
\begin{align*}
\Delta_n - (KF)_n &= 0 \quad \text{– cover deficits with surpluses} \\
\min \sum_l F_l^2 &= \text{– minimize transmission dissipation}
\end{align*}
\]

Δ_n – power surplus/deficit at node n,
F_l – power flow along link l,
K – incidence matrix, encodes network topology,
$(KF)_n$ – net flow out of node n
Generalisation

DC power flow only works for

- $\sum_n \Delta_n = 0$ – energy conservation
- Unconstrained flows

\Rightarrow Generalisation:

$$\begin{align*}
\min \sum_n (\Delta_n - (KF)_n) - &= \min \sum_n B_n \quad \text{– minimize residual deficit} \\
\min \sum_l F_l^2 &= \min \quad \text{– minimize dissipation}
\end{align*}$$

- Back-up power to cover deficits if needed
- Shed surplusses if necessary
- Constraints on the transmission line capacities
 $$h_l - F_l \leq F_l \leq h_l$$
Two extreme cases:

- No transmission – C_{zero}
 \Rightarrow high total back-up energy $B_{\text{tot}}(C_{\text{zero}})$

- Unconstrained transmission – $C_{\text{unconstrained}}$
 \Rightarrow low total back-up energy $B_{\text{tot}}(C_{\text{unconstrained}})$

Benefit of transmission of a general transmission layout C_{CL}:

$$\beta_{CL} = \frac{B_{\text{tot}}(C_{\text{zero}}) - B_{\text{tot}}(C_{CL})}{B_{\text{tot}}(C_{\text{zero}}) - B_{\text{tot}}(C_{\text{unconstrained}})}$$

Resonable compromise:

90% benefit of transmission capacities
Which links should be reinforced first?

- Multiples of today’s capacities
- Different quantiles of unconstrained flow
Quantile line capacities

Flow histogram PL to DE
- Unconstrained flow
- 99% Quantile
- Installed today
- 99.9% Quantile
- 100% Quantile

Occurences (normalized)

Nonzero, directed power flow/GW

Sarah Becker
European transmission grid
Network evolution

2010

Gross share of wind and solar power

Power transfer capacity

≤ 0.7 GW
≤ 1.5 GW
≤ 2.5 GW
≤ 4.0 GW
≤ 6.0 GW
≤ 10.0 GW
≤ 15.0 GW
≤ 20.0 GW
≤ 25.0 GW
> 25.0 GW

Sarah Becker
European transmission grid
Network evolution

2030

Gross share of wind and solar power

Power transfer capacity

Sarah Becker
European transmission grid
Network evolution

2040

Gross share of wind and solar power

Power transfer capacity

Sarah Becker
European transmission grid
Network evolution

2050

Gross share of wind and solar power

Power transfer capacity

Sarah Becker
European transmission grid
Investment per five year interval

Logistic growth of wind (a) and solar PV (b) power

Growth in 90% benefit line capacities (a) and incremental investment per five-years (b)
Denmark

Import opportunities for Denmark
- Deficit
- Import with $CL_{unconstrained}$
- Import with $CL_{90\%}$
- Import with CL_{today}

Export opportunities for Denmark
- Excess generation
- Export with $CL_{unconstrained}$
- Export with $CL_{90\%}$
- Export with CL_{today}
Spain

Production (normalised)

Import opportunities for Spain
- Deficit
- Import with CL unconstrained
- Import with CL 90%
- Import with CL today

Export opportunities for Spain
- Excess generation
- Export with CL unconstrained
- Export with CL 90%
- Export with CL today

Sarah Becker

European transmission grid
France

Import opportunities for France
- Deficit
- Import with $CL_{unconstrained}$
- Import with $CL_{90\%}$
- Import with CL_{today}

Export opportunities for France
- Excess generation
- Export with $CL_{unconstrained}$
- Export with $CL_{90\%}$
- Export with CL_{today}
Germany

Import opportunities for Germany
- Deficit
- Import with CL unconstrained
- Import with CL 90%
- Import with CL today

Export opportunities for Germany
- Excess generation
- Export with CL unconstrained
- Export with CL 90%
- Export with CL today

Sarah Becker
European transmission grid
Denmark

Mismatch between load and generation (normalised)

Denmark, reference year 2030
\[\gamma_{DK} = 0.78, \quad \gamma_{avg} = 0.55\]

- Load
- Mismatch before sharing renewables
- Mismatch after sharing, Line capacities as of today
- Mismatch after sharing, 90% benefit of transm. line capacities

Denmark, reference year 2050
\[\gamma_{DK} = 0.98, \quad \gamma_{avg} = 0.98\]

- Load
- Mismatch before sharing renewables
- Mismatch after sharing, Line capacities as of today
- Mismatch after sharing, 90% benefit of transm. line capacities
Spain

Mismatch between load and generation (normalised)

Spain, reference year 2030
$\gamma_{\text{ES}} = 0.70$, $\gamma_{\text{avg}} = 0.55$

Mismatch before sharing renewables
Mismatch after sharing, Line capacities as of today
Mismatch after sharing, 90% benefit of transm. line capacities

Spain, reference year 2050
$\gamma_{\text{ES}} = 0.97$, $\gamma_{\text{avg}} = 0.98$

Mismatch before sharing renewables
Mismatch after sharing, Line capacities as of today
Mismatch after sharing, 90% benefit of transm. line capacities
France

Mismatch between load and generation (normalised)

France, reference year 2030
$\gamma_{FR}=0.50$, $\gamma_{avg}=0.55$

- Load
- Mismatch before sharing renewables
- Mismatch after sharing, Line capacities as of today
- Mismatch after sharing, 90% benefit of transm. line capacities

France, reference year 2050
$\gamma_{FR}=0.99$, $\gamma_{avg}=0.98$

- Load
- Mismatch before sharing renewables
- Mismatch after sharing, Line capacities as of today
- Mismatch after sharing, 90% benefit of transm. line capacities
Germany

Mismatch between load and generation (normalised)

- Germany, reference year 2030:
 - Load: \(\gamma_{DE} = 0.63, \gamma_{avg} = 0.55 \)
 - Mismatch before sharing renewables
 - Mismatch after sharing, line capacities as of today
 - Mismatch after sharing, 90% benefit of transmission line capacities

- Germany, reference year 2050:
 - Load: \(\gamma_{DE} = 0.97, \gamma_{avg} = 0.98 \)
 - Mismatch before sharing renewables
 - Mismatch after sharing, line capacities as of today
 - Mismatch after sharing, 90% benefit of transmission line capacities

Sarah Becker
European transmission grid
End-point mixes

\[\alpha_{opt, \text{EU agg.}} = 0.894, \quad \alpha_{opt, \text{EU avg.}} = 0.794 \]
Wind resources decorrelate at distances around 500–1000 km
Linecaps/Backup tradeoff

Scenarios
- +5% backup, PV
- +2% backup, PV
- +1% backup, PV
- Backup optimal
- +1% backup, wind
- +2% backup, wind
- +5% backup, wind

Total line capacities (normalised)

Backup energy (normalised)
Conclusions

Model ingredients:

- Weather-based modelling
- Logistic growth of renewable installations
- DC power flow

Results:

- Quantile line capacities useful approach
- Quadrupling today’s line capacities yields 90% of potential benefit
- Transmission reduces backup energy by up to 40% BUT does not provide last-resort secure capacity
- Especially during critical times, backup power is not much reduced