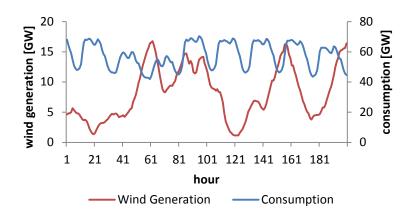


The Effect of Variable Renewable Energy Sources on Wholesale Electricity Prices – Implementation of a Stochastic Wind Feed-in


Thomas Möbius Strommarkttreffen, Cottbus 18.09.2015

- Agenda
 - 1. Motivation
 - 2. Methodology
 - 3. Basic Model
 - 4. Results Perfect Foresight
 - 5. Results Uncertain Wind Feed-in
 - 6. Conclusion

Motivation

- Structural changes to many electricity systems as intermittent RES as wind and PV enter the market
 - Highly fluctuating availability
 - Low correlation between intermittent RES generation and demand

- \rightarrow The system adjusts
- \rightarrow Over capacities will leave the market
- → Prices will reflect the structural changes in the system

- ... implications for wholesale electricity prices, power plant revenues, flexibility requirements and market design are among the most fundamental issues currently discussed in electricity markets
 - How will prices behave in a market with high shares of intermittent RES in the long run?
 - Increasing price variances due to intermittent RES generation?
 - How is the price variance driven considering a long term equilibrium?

Brandenburg University of Technology

Methodology

- Analyzing the price variance on a fundamental basis by applying a linear electricity market model
- Long term (partial) market equilibria
 - System optimal decision about capacity investments
 - System optimal generation dispatch depending on the available capacities
- Full cost approach
 - Variable costs and investment costs are represented in the resulting market price
 - Scarcities and scarcity prices will occur as investments have to be covered
- Green field approach
 - No existing power plants avoiding sunk investment costs

- Stylized system with two thermal technologies and one intermittent RES technology
 - Base-Load Technology: High fix and low variable costs
 - Peak-Load Technology : Low fix and high variable costs

Technology	Annual fixed costs [€/MW*a] <i>ic_i</i>	Variable production costs [€ /MWh] <i>vc_i</i>	Start-up costs [€ΔMW] sc _i	Minimal load [%] g_i ^{min}	Efficiency loss at minimum load [%-pt]
Base Load	132,000	34	105	40	6
Peak Load	56,000	70	40	20	22
Wind	-	0	0	0	0

- Variable wind generation as the only intermittent RES
 - Wind capacities exogenously implemented

Brandenburg University of Technology – Chair of Energy Economics - Thomas Möbius

Basic Model

 $\min TC = \sum_{i,t} vc_i * G_{i,t}$

Objective Function

 $+\sum_{i}ic_{i}*D_{i}$

 $+ \sum_{i,t} sc_i * SU_{i,t}$

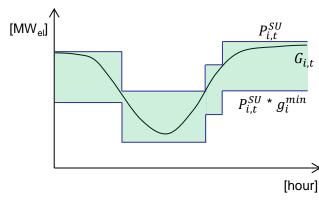
 $+ \sum_{i,t} (P_{i,t}^{SU} - G_{i,t}) * z_i$

Variable generation costs

Annualized investment costs

Start-up Costs

Costs at partial load


Upper bound constraint

 $0 \le G_{i,t} \le P_{i,t}^{SU} \quad \forall i,t$

Lower bound constraint

 $P_{i.t}^{SU} * g_i^{min} \leq G_{i,t} \quad \forall i, t$

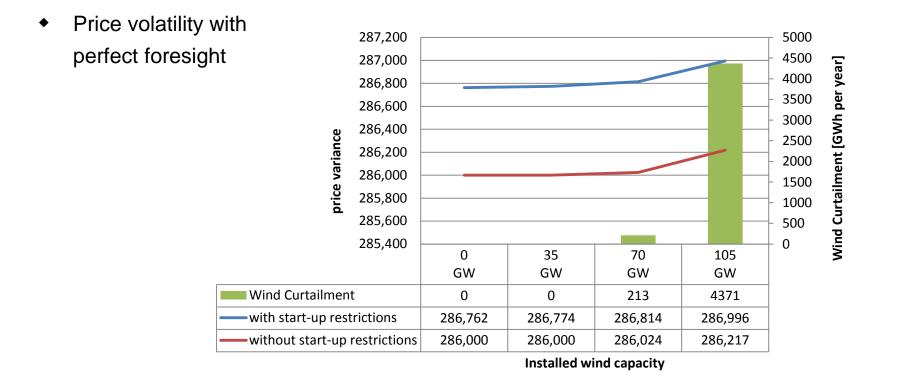
 $P_{i,t}^{SU}$ $P_{i,t}^{SU} * g_i^{min}$

Basic Model

b-tu

Brandenburg University of Technology

- Activating start-up costs $P_{i,t}^{SU} P_{i,t-1}^{SU} \le SU_{i,t} \quad \forall i, t$
- Upper limit for started capacity $P_{i,t}^{SU} \le D_i * af_i \quad \forall i, t$
- Wind feed-in $0 \leq G_{"Wind",t} \leq pf_t * cap_{"Wind"} \quad \forall t$

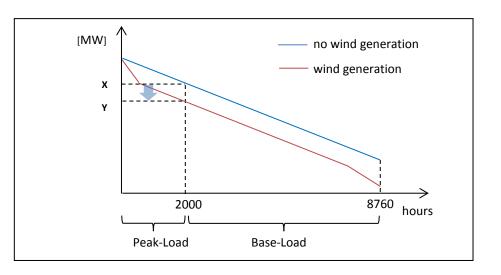

• Energy Balance - Clearing the market in every time period

$$\sum_{i} G_{i,t} = dem_t \quad \forall t$$

Results

b-tu

Brandenburg University of Technology

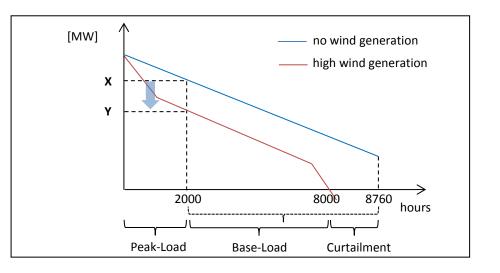

Increasing start-up activities do not have a significant impact on the price variance as wind curtailment activities

Brandenburg University of Technology - Chair of Energy Economics - Thomas Möbius

Results – Analytical Explanation

- "Textbook" example
 - No start-up restrictions
 - Price only influenced by fuel and investment costs
 - Only three possible prices to occur within the considered year
 - Base-Load Price
 - Peak-Load Price
 - Scarcity Price

$$Var = \frac{1}{n} * \left(\sum_{1}^{B} (p^{Base} - \bar{p})^2 + \sum_{1}^{P} (p^{Peak} - \bar{p})^2 + (p^{Scarce} - \bar{p})^2 \right)$$

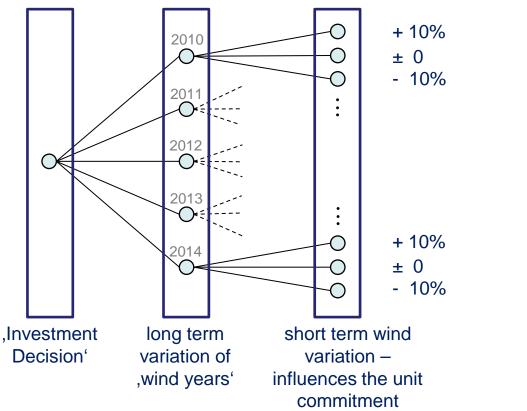

b-tu Brandenburg

Brandenburg University of Technology - Chair of Energy Economics - Thomas Möbius

Results – Analytical Explanation

- "Textbook" example part II
 - With an increasing shares of RES wind curtailment becomes an option
 - During times of wind curtailment
 prices at 0 €/MWh appear

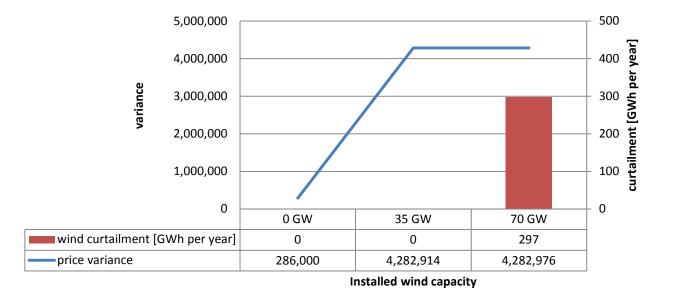
$$Var = \frac{1}{n} * \left(\sum_{1}^{B} (p^{Base} - \bar{p})^2 + \sum_{1}^{C} (p^{Curt} - \bar{p})^2 + \sum_{1}^{P} (p^{Peak} - \bar{p})^2 + (p^{Scarce} - \bar{p})^2 \right)$$



Results – Volatility under Uncertainty

Brandenburg University of Technology

Implementing uncertain wind realization

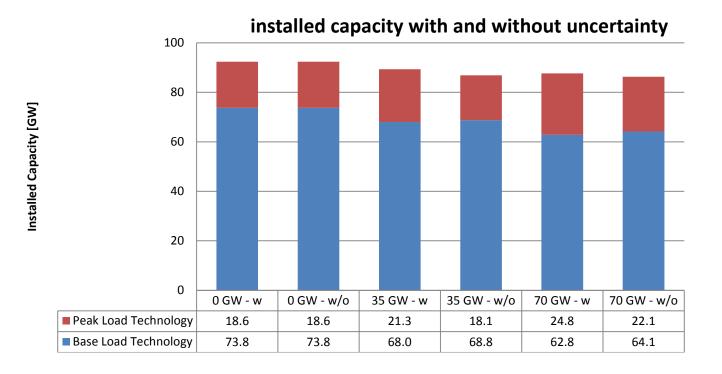


- global investment decision considering an uncertain wind realization
- Long term uncertainty due to a set of different 'wind years'
- Short term uncertainty with a strong impact at the start-up decision
 - Started capacity is fixed at the second stage of the scenario tree, but has to hold for all variations at the third stage

 ^{&#}x27;one stage' electricity market model

- Generally higher values due to lower likelihood for the occurrence of the scarcity hour and thus, a significant higher value for the scarcity price
- Increasing price volatility with the implementation of wind capacities

- The volatility of electricity wholesale prices is an important indicator to future electricity markets
 - Regarding the need of flexibility options
- Price volatility in the first place is mainly driven by upcoming wind curtailment activities
- We find a (partial) market equilibrium with regard of an uncertain wind realization
 - The problem is solved within one stage
- The increase of the volatility is mainly driven by the 'uncertain' appearance of the scarcity hour and thus, the scarcity price is significantly higher



Thank you very much! Questions?

Brandenburg University of Technology - Chair of Energy Economics - Thomas Möbius

- Comparison of resulting investment decision with and without considering uncertainty
 - Uncertain wind realization encourages a higher share of peak load plants

Brandenburg University of Technology

Backup II – Basic Model

Objective Function

$$\min TC = \sum_{i,t} (vc_i * G_{i,t} + sc_i * SU_{i,t}) + \sum_{i,t} (P_{i,t}^{SU} - G_{i,t}) * z_i + \sum_i (ic_i * D_i)$$

$$[MW]$$

$$I_{i,t} = \Delta vc_i * g_i^{min} / (1 - g_i^{min})$$

$$P_{i,t}^{SU} - P_{i,t-1}^{SU} \le SU_{i,t} \quad \forall i, t$$

$$[MW]$$

$$P_{i,t}^{SU} - P_{i,t-1}^{SU} \le SU_{i,t} \quad \forall i, t$$

- Operating at partial load is causing lower efficiency rates and thus, higher variable costs