

Estimating Demand Elasticities

Results from Econometric Models applied by TM-MS

What to look for in Top-Down Demand Models?

Specification: Heterogeneous vs. Homogeneous Models

Theoretical Properties

Dynamic Estimation of Demand Elasticities						
Heterogeneous Models	Mixed Models	Homogeneous Models				
Time Series (AR, ARDL, OLS, VECM, Co- Integration)	Shrinkage estimators	Pooled Models (GLS, Within-Estimators, 2SLS)				
 used due to inherent parameter heterogeneity Superior theoretical properties of the estimators 	 Combine the 2 approaches Shrinking heterogeneous estimators towards pooled estimators 	 Serial correlation between lagged dependent variable and error terms remains Inconsistent & biased estimators 				

- Although there might be some theoretical caveats, in applied work, fixed effects estimators
 perform sufficiently well in MSE prediction terms
- This is especially the case in the situations of strong autocorrelation

Dynamic Demand Forecasts

Forecast Performance

OBS: Forecasting with more sophisticated econometric models require a thorough future view on explanatory variables, that are usually not easily forecasted (i.e. GVA on sector-level, end-user energy prices, income, etc.)

Dynamic Panel Data: Flow Adjustment Models

- Motivated by the idea that the stock of energy-using equipment is assumed to be fixed in the short-run and its utilization is assumed to be a function of normal economical influences.
- Over time, observed utilization is adjusted to the desired utilization (flow adjustment mechanism).
- Assume the simple log-linear relationship between energy consumption (E^*) and real GDP (Y)

$$E^* = \alpha Y^{\gamma}$$

Adjustment to the desired consumption is assumed to follow the simple process

$$\frac{E_t}{E_{t-1}} = \left(\frac{E_t^*}{E_{t-1}}\right)^{\theta}.$$

Inserting time and country subscripts and rearranging Equation (2) yields

$$\ln E_{it} = \theta \ln \alpha + \theta \gamma \ln Y_{it} + (1 - \theta) \ln E_{i,t-1} + u_{it}.$$

- The above specification might be too restrictive towards lags of additional explanatory variables
- Generalization to different lag structures of additional varibales is possible, see Baltagi (1997).

Model Specification

Consider the following standard dynamic linear regression (DLR) model for energy demand

$$y_{i,t} = \beta_{i,0} + \beta_{i,1}y_{i,t-1} + \beta_{i,2}x_{1,i,t} + \beta_{i,3}x_{1,i,t-1} + \beta_{i,4}x_{2,i,t} + \beta_{i,5}x_{3,i,t} + u_{i,t}$$

with $i=1,2,\ldots,26$ (countries), $t=2,3,\ldots,19$ spanning the period 1994-2012 and $u_{i,t}=\alpha_i+v_{i,t}$, where α_i denote the country-specific effects and $v_{i,t} \sim \text{IID}(0,\sigma_v^2)$, $\beta_{i,k} = \beta_{j,k} \ \forall \ i,j \in (1,26), i \neq j$.

- Variables for the electricity regression are:
 - $y_{i,t}$, logarithm of total electricity consumption;
 - $x_{1,i,t}$, logarithm of real GDP at constant 2005 prices;
 - $x_{2,i,t}$, heating degree days;
 - $x_{3,i,t}$, cooling degree days.
- Given the definitions of the flow adjustment model, it is possible to derive short and long run elasticities of demand:
 - Short-run GDP Elasticity: $SR\eta_{\nu} = \beta_{i,2}$
 - Long-run GDP Elasticity: $LR\eta_y = \frac{\beta_{i,2} + \beta_{i,3}}{1 \beta_{i,1}}$

Elasticity Models - Summary

		Aggregate	Aggregate Models		Sector Models		
		Model 1	Model 2	Industrial	Residential	Service	
A divistus a sat	1 Period	0.89 ***	0.63 ***	0.76***	0.80***	0.77***	
Adjustment	2 Periods	-	0.22 ***	-	-	-	
CDD CVA Income	Short Run	0.48 ***	0.54 ***	0.38***	-0.10	0.42 ***	
GDP, GVA, Income	Long Run	0.53 ***	0.75 ***	0.36***	0.91**	0.99***	
End Hear Driese	Short Run	-	-0.03 **	-0.04 * *	-0.12***	-0.05*	
End-User Prices	Long Run	-	-0.19 **	-0.18 * *	-0.59***	-0.20*	
VA/aathau	HDD	1.08E-05 ***	1.50E-05 ***	-	1.75E-05**	-	
Weather	CDD	4.54E-05 ***	3.91E-05 **	-	3.33E-05.	-	
Indicator	Crisis	-0.02 ***	-0.01 **	-0.09***	-	-	
Adj. R^2		0.89	0.86	0.69	0.76	0.82	

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- Adjustment factors are significant
- Demand elasticities with respect to economic activity are positive
- A one-to-one relationship is not present though
- Price elasticities are significantly negative
- Also residential electricity demand has a negative price elasticity
- In short run, residential end-users do not react to changes in income
- Weather effects do exist even on an annual level
- A lot of the information will be contained in the country specific effects, i.e. France vs. Germany

Conclusions

The number of valid models to choose from is obviously high

Keep in mind:

- Choosing between homogeneous and heterogeneous models for estimation is crucial.
- Studies suggest, that a fixed-effects one-way error component model, which takes care of country-specific heterogeneity achieves sufficiently good forecast performance in applied work.
- Hence, these kind of models where used for the estimation of electricity demand elasticities.

Next Steps:

- Investigate robustness of estimators w.r.t. variables for economic activity and end-user prices.
- 2. Apply estimators obtained from the homogeneous models in forecast procedures.
- 3. Deeper investigation of sector-specific results and development of sector-specific forecasts of economic activity and end-user prices.

Back-Up

Demand Elasticities - Literature Results

	Sauras	Voor	Vara Darian	n Method	Data	Elasticity Estimates		
	Source	Year	Region			Econ. Activity	Income	End-User Price
Industry	Beenstock et. al.	1999	Israel	Cointegation	TS: 1975q2-1994q4	L: 0.99 to 1.12		L: -0.31 to -0.44
	Bose & Shukla	1999	India	Pooled Reg.	PD: 1985-1993	0.49 to 1.06		-0.04 to -0.45
	Kamerschen, Porter	2004	USA	SEM	TS: 1973-1998	-		-0.31 to -0.55
_	Polemis	2007	Greece	Cointegration	TS: 1970-2004	L: 0.85, S:0.61		L: -0.85 S: -0.35
	Athukorala, Wilson	2010	Sri Lanka	Johansen/VECM	TS: 1960-2007		L: 0.78 S: 0.32	L: -0.62 S: -0.16
Residential	Dergiades, Tsoulfidis	2008	USA	BT/ARDL	TS: 1965-2006		L: 0.27 S: 0.10	L: -1.07 S: -0.39
	Halicioglu	2007	Turkey	BT/ARDL	TS: 1968-2005		L: 0.49 to 0.70	L: -0.52 to -0.63
							S: 0.37 to 0.44	S:033 to -0.46
	Holtedahl, Joutz	2004	Taiwan	Johansen/VECM	TS: 1955-1995		L: 1.04 to 1.57	L: -0.15
							S: 0.22	S: -0.15
	Hondroyiannis	2004	Greece	Johansen/VECM	TS: 1986M1-1999M12		L: 1.56 S: 0.20	L: -0.41
	Nakajima	2004	Japan	PC/DOLS	PD: 1975-2005		L: 0.60 to 0.65	L: -1.13 to -1.20
	Nakajima, Hamori	2010	USA	PC/DOLS	PD: 1993-2008		L: 0.38 to 0.85	L: -0.14 to -0.33
	Narayan, Smyth	2005	Australia	BT/ARDL	TS: 1969 - 2000		L: 0.32 to 0.41	L: -0.47 to -0.54
							S: 0.01 to 0.04	S: -0.26 to -0.27
	Narayan et al.	2005	G7	PC/DOLS	PD: 1978-2003		L: 0.25 to 0.31	L: -1.45 to -1.56
							S: - 0.19	S: - 0.11
	Zachariadis et. al.	2007	Cyprus	Johansen/VECM	TS: 1960-2004		L: 1.18	L: -0.43
	Ziramba	2007	RZA	BT/ARDL	TS: 1978-2005		L: 0.31 to 0.87	L: -0.01 to -0.04
							S: 0.30	S: -0.02

Notes: Table taken from Madlener et. al. (2011). S and L denote estimates for the short and the long run, respectively. Elasticity estimates which are not statistically significantly different from zero on conventional levels are printed in italics. T: Nu

