What VRE impacts are important for long-term planning?

What VRE impacts are important for long-term planning?

Different models, different purposes and resolution

- 1. Directly increasing the temporal resolution
- 2. Restructuring time to capture variability/flexibility with a low temporal resolution
- 3. Using a production cost model 3 4. Additional constraints that account for variability or flexibility Voltage stability Grid studies Frequency Grid congestion stability **Production cost** models Operating Ramping reserves constraints **Transmission** Small 1 expansion capacity Long-term credit planning models Capacity Reduced utilization of expansion **Temporal** dispatchable plants resolution **5years** 1year days minutes hours ms

- 1. Directly increasing the temporal resolution
- 2. Restructuring time to capture variability/flexibility with a low temporal resolution
- 3. Using a production cost model
- 4. Additional constraints that account for variability or flexibility Voltage stability

- 1. Directly increasing the temporal resolution
- 2. Restructuring time to capture variability/flexibility with a low temporal resolution
- 3. Using a production cost model
- 4. Additional constraints that account for variability or flexibility

Voltage stability

Grid congestion Frequency stability

- 1. Directly increasing the temporal resolution
- 2. Restructuring time to capture variability/flexibility with a low temporal resolution
- 3. Using a production cost model
- 4. Additional constraints that account for variability or flexibility Voltage stability

- 1. Directly increasing the temporal resolution
- 2. Restructuring time to capture variability/flexibility with a low temporal resolution
- 3. Using a production cost model
- 4. Additional constraints that account for variability or flexibility

 Voltage stability

Approaches of accounting for variability and flexibility in long-term planning models

1. Directly increasing the temporal resolution

2. Restructuring time to capture variability/flexibility with a low temporal resolution

2.1. Representative time slices: load-based choice

Constructing temporal bins for average values of load and VRE based on load values for weekday, weekend, summer, winter; with arbitrary choice of VRE (high wind, low wind) (e.g. Standard TIMES)

2.2. Representative time slices: clustering

Constructing temporal bins for average values of load and VRE based on clustering points in time with similar load, wind and solar values (e.g. LIMES)

2.3. Characteristic days/weeks

Optimizing based on some highly resolved periods of the year

2.4. Residual load duration curves (RLDCs)

Optimizing based on exogenous RLDCs (can be implemented via time slices)

3. Using a production cost model

3.1. Iteration with a production cost model

Soft-coupling the two models and iterating runs

3.2. Parameterizing simple constraints (see approach 4)

3.3. Validation

to validate other approaches of accounting for short-term aspects

4. Additional constraints that account for variability or flexibility

- e.g. flexibility constraint (Sullivan et al), integration cost penalties (Pietzcker et al., Ueckerdt et al.), reserve capacity constraints (accounting for capacity credits), VRE curtailment, ramping constraint
- such constraints can be parameterized by models, data analyses or technical-economic parameters

For discussion

- Do you find the suggested structure helpful?
- Are there more approaches?
- Relevance of characteristic weeks?