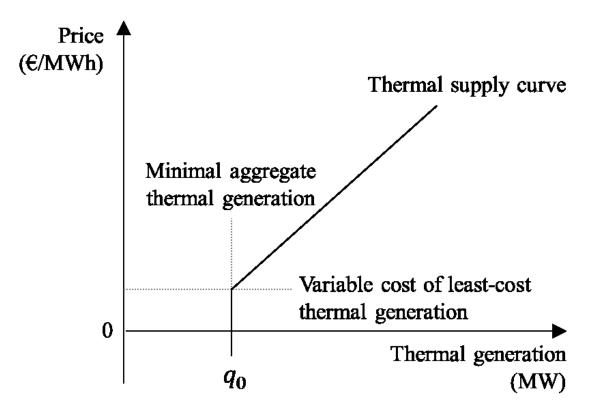
Minimal Thermal Generation in Power Systems

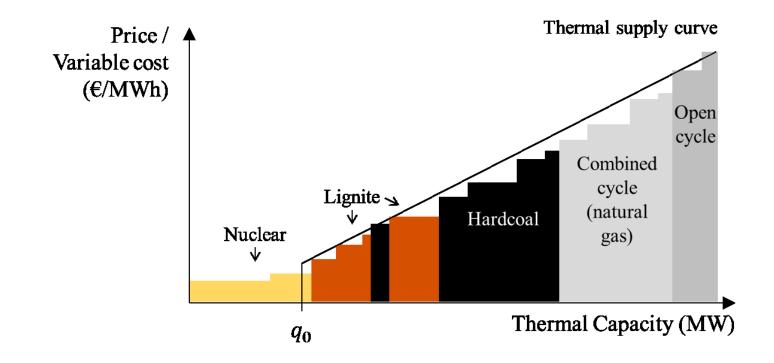
Inferring Private Cost Parameters from Observed Firm Behavior

Lion Hirth | hirth@neon-energie.de Strommarkttreffen TechTalk | 20 Feb 2015

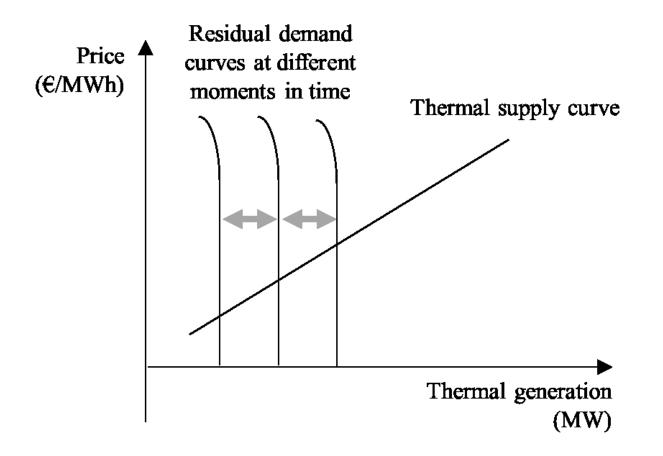
Merit-order dispatch vs. must-run constraints

Merit-order dispatch


- power plants bid variable costs
- produce if price > variable costs (positive margin)
- do not produce otherwise


This is inaccurate

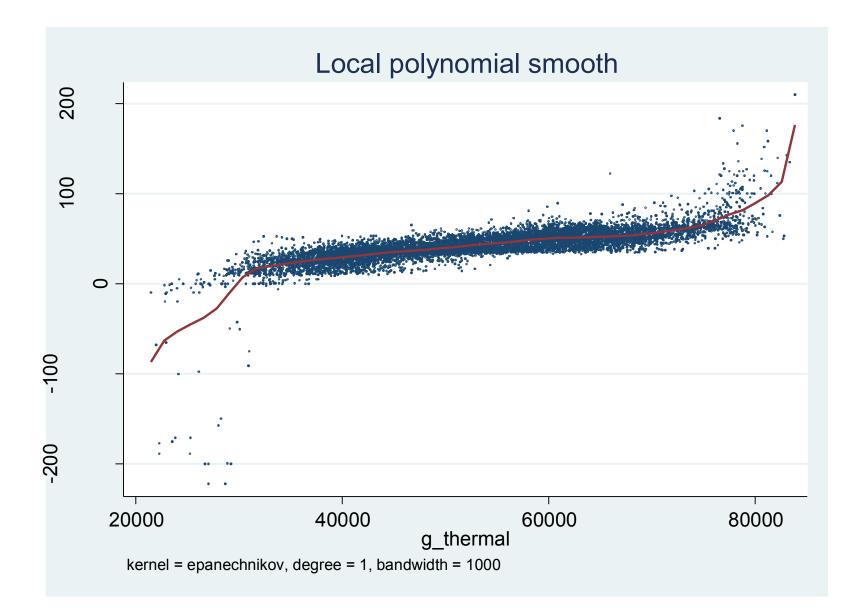
- high price levels: scarcity pricing, exercise of market power
- low price leves: must-run constraints


"Must-run constraints"

- Def: anything that makes power plants produce at negative
- ("inflexibility")
- co-generation (heat or ancillary services)
- dynamic constraints (unit commitment problem)
- at the level of a single plant, these issues are well understood
- \rightarrow what is the minimal level of thermal generation in a large real-world power system?

The classical identification problem – solved?

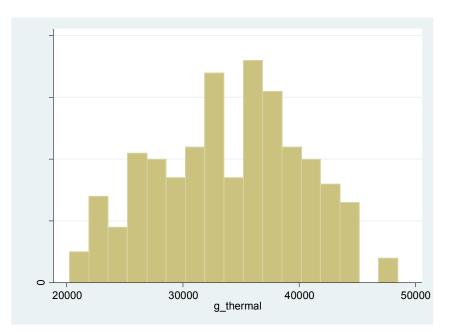
Data


Table 1: Number of hours with low or negative day-ahead prices in Germany.

2006	59
2007	110
2008	97
2009	188
2010	68
2011	35
2012	93
2013	126
2014	132

Thermal generation cannot be observed directly

$$g_t^{thermal} \approx \hat{l}_t \cdot \varphi^l + x_t - g_t^{wind} \cdot \varphi^{wind} - g_t^{solar} - 11 \, GW - \hat{n}_t^{ps}$$


- scaling of load (\rightarrow Maximilian)
- scaling of wind generation (\rightarrow yearly scaling factor)
- biomass, hydro generation (\rightarrow assumed to be base load)
- pumped hydro dispatch (\rightarrow at low/negative prices, 2/3 assumed to be pumping)

Min gen (q_0) level: 34 GW – but significant variation

Table 3: Descriptive statistics of low price events

1		
	Mean	
Obs	301	
	(1.2% of sample)	
Price	-16 €/MWh	
Load	55 GW	
Wind generation	17 GW	
Solar generation	3 GW	
Net exports	6 GW	
Pumped hydro	- 4 GW	
generation		
Thermal	24 CW	
generation	34 GW	

Point estimate for minimal thermal generation: 34 GW.

$g_t^{thermal} = \beta_0 + \beta_1 \cdot Winter + \beta_2 \cdot Peak + \beta_3 \cdot Year + \varepsilon_t$

Table 4: Regression results.		
Model	(1)	(2)
Estimator	OLS	OLS
Obs	301	301
Dependent variable	q_0	q_0
Winter	2.8***	2.4***
Peak period	7.1***	5.2***
Winter * Peak period	- 2.5	1.8
2013	5.7***	5.6***
2014	11.9***	11.9***
Duration	-	-0.45***
Constant	26.1***	29.1***
Adjusted R ²	0.48	0.54
Asterisks denote significance at *100	%, **5%, and ***1% level.	

Findings

- during times of negative margins, on average 34 GW of thermal capacity kept producing
- apparently significant inflexibility! ("must-run constraints")
- large variation in this level sometimes generation was reduced to 20 GW, sometimes operators kept 49 GW online despite making losses
- higher in winter (CHP?), higher in peak times
- longer duration of periods of negative margins led to lower levels of thermal generation
- we expected learning but thermal minimal generation levels *increased* 2012 – 2014

Minimal Thermal Generation in Power Systems

Inferring Private Cost Parameters from Observed Firm Behavior

hirth@neon-energie.de

USAEE Working Paper No. 15-203

