

Addressing variable renewables in long-term energy planning (AVRIL)

Strommarkttreffen Jan 30, 2015, Berlin Falko Ueckerdt

IRENA – an international organization supported by 171 member states

IRENA was founded in 2009 with the mandate of

Supporting sustainable deployment of renewables worldwide

IRENA member states request support for energy planning with variable renewables

1. Guideline for how to introduce variable renewables in the short term.

2. Guideline for long-term energy planning with variable renewables.

- 1. Why long-term energy planning?
- 2. Which VRE system impacts are relevant to long-term planning?
- 3. Which planning tools are currently used? What do they miss?
- 4. What are modeling approaches that account for these impacts?

Why does a cost-efficient and reliable power system require long-term energy planning?

- No markets in many countries (in particular non-OECD)
 → central planner (e.g. state-owned utility)
- 2. Market based systems: planning needed for policy targets/instruments, transmission grid expansion, private investment decisions
- 3. Long building times and lifespan of energy infrastructure
- 4. Inadequate generation&transmission cause "costs of mismatch" and might endanger system reliability
- 5. VRE increase the need for long-term planning
 - Transformation & More interaction of system components
 - \rightarrow "costs of mismatch" increase and addional challenges to reliability

- 1. Why long-term energy planning?
- 2. Which VRE system impacts are relevant to long-term planning?
- 3. Which planning tools are currently used? What do they miss?
- 4. What are modeling approaches that account for these impacts?

Which VRE system impacts are relevant to long-term planning?

VRE properties

- 1. Variability
- 2. Uncertainty
- 3. Spatial variability

4. Non-synchronous generation

5. Distributed generation

System impacts

- 1. Small capacity credit, reduced utilization of dispatchable plants, increased flexibility requirements
- 2. Higher forecast errors → additional operating reserves
- 3. Grid congestion, additional transmission grid investments
- 4. Decreased frequency stability, power electronic devices required
- 5. Voltage stability, additional distribution grid investments, advanced power devices
 - 2nd order impact: curtailment
 - There are more mitigation measures
 - more relevant impacts?

What temporal resolution is required to directly address impacts in models?

Reduced utilization of

Challenge: Combining these short-term scales with long-term time horizon of capacity expansion models

- 1. Why long-term energy planning?
- 2. Which VRE system impacts are relevant to long-term planning?
- 3. Which planning tools are currently used? What do they miss?
- 4. What are modeling approaches that account for these impacts?

Which planning tools are currently used? What do they miss?

Capacity expansion models used for planning in non-OECD countries: e.g. MESSAGE, Balmorel, OSeMOSYS, TIMES, WASP, HOMER ...or no model at all

- 1. Why long-term energy planning?
- 2. Which VRE system impacts are relevant to long-term planning?
- 3. Which planning tools are currently used? What do they miss?
- 4. What are modeling approaches that account for these impacts?

What are modeling approaches that account for these impacts?

Approach	Merits	Drawbacks
1. Directly increasing the temporal resolution	One optimization framework.Straight forward implementationCould cover all VRE impacts	Numerically demanding or not possible
2. Representative time slices (adhoc/clustering)	Numerically less demanding.Captures most VRE impacts.	 What is a good choice? Temporal order partly lost. High number necessary to capture wind variability?
3. Residual load duration curves	 Numerically much less demanding. Captures most important impacts (capacity credit, utilisation) 	 Temporal order lost. Copper plate assumption → no transmission Linear implementation?
4. Characteristic days/weeks	 Numerically less demanding. Very high detail possible → capturing all VRE impacts 	How to find a representative choice?
5. Link with a highly resolved model	 Numerically less demanding? High detail possible → capturing all VRE impacts 	 Separated optimization → Complex iteration to converge? Harmonize model scope and parameter
6. Parameterizations (e.g. flexibility constraint)	Numerically less demanding.Intuitive and easy to implement	 How to find parameterization that is robust over many scenarios? How to account for interactions?

Danke für die Aufmerksamkeit und das Feedback!