Addressing variable renewables in long-term energy planning (AVRIL)

Strommarktetreffen
Jan 30, 2015, Berlin
Falko Ueckerdt
IRENA was founded in 2009 with the mandate of
Supporting sustainable deployment of renewables worldwide
IRENA member states request support for energy planning with variable renewables

Energy planning officials:
“Let’s quickly deploy variable renewables (VRE)”
“Adopting ambitious long-term VRE targets is worthwhile”

System operators:
“VRE endanger the power system’s reliability”
„There is an upper limit of X% VRE“

1. Guideline for how to introduce variable renewables in the short term.
2. Guideline for long-term energy planning with variable renewables.
Guideline for long-term energy planning with variable renewables: key questions

1. Why long-term energy planning?
2. Which VRE system impacts are relevant to long-term planning?
3. Which planning tools are currently used? What do they miss?
4. What are modeling approaches that account for these impacts?
Why does a cost-efficient and reliable power system require long-term energy planning?

1. No markets in many countries (in particular non-OECD) → central planner (e.g. state-owned utility)

2. Market based systems: planning needed for policy targets/instruments, transmission grid expansion, private investment decisions

3. Long building times and lifespan of energy infrastructure

4. Inadequate generation & transmission cause „costs of mismatch“ and might endanger system reliability

5. VRE increase the need for long-term planning
 - Transformation & More interaction of system components
 → „costs of mismatch“ increase and addional challenges to reliability
Guideline for long-term energy planning with variable renewables: key questions

1. Why long-term energy planning?
2. Which VRE system impacts are relevant to long-term planning?
3. Which planning tools are currently used? What do they miss?
4. What are modeling approaches that account for these impacts?
Which VRE system impacts are relevant to long-term planning?

<table>
<thead>
<tr>
<th>VRE properties</th>
<th>System impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Variability</td>
<td>1. Small capacity credit, reduced utilization of dispatchable plants, increased flexibility requirements</td>
</tr>
<tr>
<td>2. Uncertainty</td>
<td>2. Higher forecast errors → additional operating reserves</td>
</tr>
<tr>
<td>3. Spatial variability</td>
<td>3. Grid congestion, additional transmission grid investments</td>
</tr>
<tr>
<td>5. Distributed generation</td>
<td>(5. Voltage stability, additional distribution grid investments, advanced power devices)</td>
</tr>
</tbody>
</table>

- 2nd order impact: curtailment
- There are more mitigation measures
- more relevant impacts?
What temporal resolution is required to directly address impacts in models?

- Reduced utilization of dispatchable plants
- Small capacity credit
- Grid congestion/extension
- Increased flexibility requirements
- Additional operating reserves

Stability studies

- Frequency stability
- Voltage stability

1s 1min 1hour 1month 1year

Challenge: Combining these short-term scales with long-term time horizon of capacity expansion models
Guideline for long-term energy planning with variable renewables: key questions

1. Why long-term energy planning?
2. Which VRE system impacts are relevant to long-term planning?
3. Which planning tools are currently used? What do they miss?
4. What are modeling approaches that account for these impacts?
Which planning tools are currently used? What do they miss?

Capacity expansion models used for planning in non-OECD countries: e.g. MESSAGE, Balmorel, OSeMOSYS, TIMES, WASP, HOMER
…or no model at all
Guideline for long-term energy planning with variable renewables: key questions

1. Why long-term energy planning?
2. Which VRE system impacts are relevant to long-term planning?
3. Which planning tools are currently used? What do they miss?
4. What are modeling approaches that account for these impacts?
What are modeling approaches that account for these impacts?

<table>
<thead>
<tr>
<th>Approach</th>
<th>Merits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Directly increasing the temporal resolution</td>
<td>• One optimization framework.</td>
<td>Numerically demanding or not possible</td>
</tr>
<tr>
<td></td>
<td>• Straight forward implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Could cover all VRE impacts</td>
<td></td>
</tr>
<tr>
<td>2. Representative time slices (adhoc/clustering)</td>
<td>• Numerically less demanding.</td>
<td>• What is a good choice?</td>
</tr>
<tr>
<td></td>
<td>• Captures most VRE impacts.</td>
<td>• Temporal order partly lost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High number necessary to capture wind variability?</td>
</tr>
<tr>
<td>3. Residual load duration curves</td>
<td>• Numerically much less demanding.</td>
<td>• Temporal order lost.</td>
</tr>
<tr>
<td></td>
<td>• Captures most important impacts (capacity credit, utilisation)</td>
<td>• Copper plate assumption → no transmission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Linear implementation?</td>
</tr>
<tr>
<td>4. Characteristic days/weeks</td>
<td>• Numerically less demanding.</td>
<td>• How to find a representative choice?</td>
</tr>
<tr>
<td></td>
<td>• Very high detail possible → capturing all VRE impacts</td>
<td></td>
</tr>
<tr>
<td>5. Link with a highly resolved model</td>
<td>• Numerically less demanding?</td>
<td>• Separated optimization → Complex iteration to converge?</td>
</tr>
<tr>
<td></td>
<td>• High detail possible → capturing all VRE impacts</td>
<td>• Harmonize model scope and parameter</td>
</tr>
<tr>
<td>6. Parameterizations (e.g. flexibility constraint)</td>
<td>• Numerically less demanding.</td>
<td>• How to find parameterization that is robust over many scenarios?</td>
</tr>
<tr>
<td></td>
<td>• Intuitive and easy to implement</td>
<td>• How to account for interactions?</td>
</tr>
</tbody>
</table>
Danke für die Aufmerksamkeit und das Feedback!