

POSSIBLE FUTURES FOR GERMANY'S ELECTRICITY INFRASTRUCTURE FROM A SOCIO-TECHNICAL PERSPECTIVE

Eva Schmid, Brigitte Knopf, Anna Pechan Strommarkttreffen @DLR Berlin 9.Juli 2014

GEFÖRDERT VOM

Motivation

- Germany's energy system is in a state of transition *Energiewende* (& ist targets...)
- Electricity sector: not only RES \(\bar{\gamma}\), also requires
 other infrastructures to change/expand in a
 coherent manner:
 - Transmission, distribution grids
 - IT infrastructure
 - Demand-side infrastructure

Postulations

- Postulation 1: Infrastructure design determines "what is possible" / sets technical boundaries, e.g.
 - DSM requires smart grids
 - Pan-European balancing require transmission grid capacities
- Postulation 2: Different infrastructure configurations are consistent with different visions of the future system logic
 - "Decentralized paradigm"
 - "Centralized paradigm"

Motivation

- Electricity-related infrastructure is highly pathdependent and resistant to transformational changes (Markard, 2011)
- → Need for anticipated planning!
- Electricity-related infrastructure has an embedded societal dimension, e.g.
 - Generation and grids are highly visible
 - Demand side ↔ user behavior
 - IT \leftrightarrow big data
- → Socio-technical system (Hughes, 1987)

Problem Statement

 Such issues neglected in existing mitigation scenario work (with quantitative models)

The aim of this paper is to develop and analyze a set of long-term scenarios for possible future developments of the German electricity infrastructure

that acknowledge its socio-technical character to a greater extent than is done to date.

 Potentially these scenarios can be used as a basis in a societal communication process

Research Questions

- 1. Which **infrastructure-related challenges** arise in possible low-carbon futures from a sociotechnical perspective?
- 2. What are **consistent** infrastructure-futures?
- 3. Which infrastructure-related path dependencies are particularly resistant to change, constituting **bottlenecks** in the transition?

Applied Methods

- Qualitative approach to scenario development and analysis to explore the option space for Germany's electricity infrastructure
- Scenario development: Combination of
 - [Logic] Field anomaly relexation (FAR) (Rhyne, 1995)
 - [Software] Cross-impact-balance (CIB) matrix (Weimer-Jehle, 2006)
- Scenario analysis:
 - Branching point analysis (Foxon et al, 2013)

Branching Points

"Branching points are defined as **key decision points** in a pathway at which **actors' choices**, made in response to internal or external pressures, determine whether and in what ways the pathway is followed" (Foxon, 2013, p.147)

- Historical branching points (BP) that determined pathway followed by German electricity sector:
 - BP 1: Want to mitigate greenhouse gas emissions in the energy sector
 - BP 2: Want to liberalize the European electricity sector
 - BP 3: Want to support renewable energy deployment
 - BP 4: Societal want to phase-out nuclear power

Research Questions

1. Which **infrastructure-related challenges** arise in possible low-carbon futures from a sociotechnical perspective?

1. Selection of scenario determinants for German electricity system

- I. RES generation large-scale ("centralized")
- II. Local RES generation ("decentralized")
- III. Residual load provision
- IV. European Transmission Grid Integration
- V. Distribution Grid & Intelligent /Smart Solutions
- VI. Storage
- VII. Demand-Side Paradigm: Towards Energy Services?

Today: $S_1P_1R_1I_1D_1L_1E_1$

(i) Selection of scenario determinants

ı	S torage Deployment	Residual Load P rovision	Large-scale R enewables	Pan- European Grid Integration	Smartening the D istribution Grid	L ocal Renewable Energy	Future E nergy Services
	S	P	R	ı	D	L	E
€	S1: Some - especially short-term	P1: "Baseload-band"	R1: Selected technologies (e.g. offshore)	I1: Very little progress	D1: Pilots – mainly grid expansion	L1: Stagnation	E1: Little public consciousness on services
t	S2: Break- through in medium- term storage	P2: "Flexible, but high FLH!"	R2: Dedicated deployment in periphery	I2: PCI's and beyond	D2: Intelligent distribution grid (passive)	L2: Dedicated & diversified increase	E2: Shift in some sectors where convenient
t	S3: Break- through in ong-term storage	P3: "Residual system"	R3: Europe- wide coordinated exploitation	I3: Security of Supply on European level	D3: Smart distribution grid (active)	L3: Dispersed solutions mainstream	E3: New demand- side paradigm

Research Questions

2. What are **consistent** infrastructure-futures?

Using the Scenario Wizard

Deskriptoren:	Variante [1]	Variante [2]	Variante [3]				
S. Storage Deployment	S1 Some - especially short-term	S2 Breakthrough in medium-term storage	S3 Breakthrough in long-term storage				
P. Residual Load Provision	P1 Baseload-Band	P2 Flexible but high full load hours	P3 Residual system				
R. Large-scale Renewables	R1 Selected technologies	R2 Dedicated deployment in periphery	R3 Europe-wide coordinated exploitation				
I. Pan-European grid Integration	I1 Very little progress	I2 PCI's and beyond	13 Security of Supply on European level				
D. Smartening the distribution of	rid D1 Pilots- mainly grid expansion	D2 Intelligent distribution grid	D3 Smart grid and market				
L. Local Renewable Energy	L1 Stagnateion at 2017 level	L2 Dedicatd & diversified increase	L3 Dispersed solutions mainstream				
E. Future Energy Services	E1 Little public consciousness	E2 Shift in sectors where convenient	E3 New demand-side paradigm				

In a world with a lot of A – can I imagine B?

[gestalt criterion]

+3: Hell, yes!

+2: Yes

+1: Maybe

2) 0: Have nothing to do with each other

-1: Maybe not

-2: No

-3: Really not!

gestalt-formation process:

the active rendering of the chaotic world of stimuli into useable, organized wholes or meaningful units

SPRIDLEv1.scw	S	S	S	P	P	P	R	R	R	1	1	1	D	D	D	L	L	L	E	E	E
	S1	S2	S3	P1	P2	P3	R1	R2	R3	11	12	13	D1	D2	D3	L1	L2	L3	E1	E2	E3
S. Storage Deployment:																					
S1 Some - especially short-term				2	2	3	2	2	2	2	2	2	3	3	3	1	3	3	0	0	2
S2 Breakthrough in medium-term storage				2	3	3	2	3	3	2	2	2	2	3	3	-1	2	3	0	2	3
S3 Breakthrough in long-term storage				-1	2	3	2	2	3	2	2	2	2	3	3	-1	2	3	-1	2	3
P. Residual Load Provision:																					
P1 Baseload-Band	2	-1	-2				2	-2	-3	3	2	1	3	-1	-3	3	-1	-3	3	-1	-3
P2 Flexible but high full load hours	2	3	2				2	2	-2	2	3	3	2	1	1	2	1	-1	2	1	-1
P3 Residual system		2	3				-1	2	3	-2	2	2	-1	2	3	-2	1	3	-3	1	3
R. Large-scale Renewables:																					
R1 Selected technologies	2	2	2	2	1	-1				3	-2	-3	2	2	2	3	2	1	2	1	0
R2 Dedicated deployment in periphery	2	2	2	1	3	2				-1	3	2	2	1	-1	3	-1	-3	2	1	0
R3 Europe-wide coordinated exploitation		2	3	-2	2	3					-1	3	1	0	-1	3	-3	-3	-1	0	0
I. Pan-European grid Integration:																					
I1 Very little progress	2	2	2	2	2	2	3	-1	-3				2	3	3	2	3	3	2	2	2
12 PCI's and beyond	2	2	2	2	2	2	1	2	-2				3	1	1	0	-1	-3	2	2	2
13 Security of Supply on European level	1	2	2	2	2	2	2	3	3				2	1	1	0	-1	-3	2	2	2
D. Smartening the distribution grid:																					
D1 Pilots- mainly grid expansion	2	1	0	2	1	-1	2	1	1	2	2	2				2	-1	-3	2	-1	-3
D2 Intelligent distribution grid	2	3	3	-3	-1	3	2	2	-1	2	2	1				-1	2	2	-1	2	3
D3 Smart grid and market	2	3	3	-3	-1	3	2	1	-2	2	1	-2				-3	2	3	-3	-1	3
L. Local Renewable Energy:			n prayonepan				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					, page and and and) parada da da	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
L1 Stagnation	2	-1	-3	3	1	-2	2	3	3	2	2	2	2	-2	-3				3	-1	-3
L2 Dedicatd & diversified increase	1	3	3	-2	1	3	2	-2	-3	2	1	-2	-1	3	2				-2	1	2
L3 Dispersed solutions mainstream	-1	3	3	-3	-2	3	0	-3	-3	0	-1	-3	-3	2	3				-3	0	3
E. Future Energy Services:																			-		
E1 Little public consciousness	0	0	0	0	0	0	0	0	0	0	0	0	2	-2	-3	0	0	0			
E2 Shift in sectors where convenient	0	0	0	0	0	0	0	0	0	0	0	0	-1	3	3	0	3	0			
E3 New demand-side paradigm	0	0	0	0	0	0	0	0	0	0	0	0	-2	3	3	0	0	3			

+ |

Übernehmen

Drucken

(ii/iii) possible timeline & branching points

(iii) Tentative characterization of branching points

Branching Point	Theme	Key actors
Α	Want to realize a European energy transition	Incumbent Utilities, Large Corporations
В	Want to realize a local / regional energy transition	Citizens, local actors, start-ups
C: "Local smart can't make it all the way"	Full potential of local/smart not accessible (legal/institutional barriers): Need to move towards European solutions	
D: "European Gridlock"	No majority in Europe for ultimate European solutions: Need to move towards local solutions	
E: Diversify!	All solutions are needed	

Possibilities

- Analyze scenarios from the perspective of institutional change
 - Which development are necessary conditions?
 - Which developments are sufficient conditions?
- Possibility to switch between trajectories
- Different CIMs lead to different scenarios!!
- Accessible for non-modelers as structured basis for discussion

de zentral

eva.schmid@pik-potsdam.de

GEFÖRDERT VOM

References

- Coyle, R. G. (2001). MORPHOLOGICAL FORECASTING—FIELD ANOMALY RELAXATION (FAR). Retrieved from <a href="http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.cgee.org.br%2Fatividades%2FredirKori%2F3316&ei=0rFOU_S50YLkswbV3YGQCA&usg=AFQjCNEd6Zh1mPZWI5qsbkZENAmMtAB0Fg&bvm=bv.64764171,d.Yms&cad=rja
- Foxon, T. J., Arapostathis, S., Carlsson-Hyslop, A., & Thornton, J. (2013). Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future. *Energy Policy*, *52*, 146–158. Retrieved from http://www.sciencedirect.com/science/article/pii/S0301421512003308
- Hughes, T. (1987). The Evolution of Large Technological Systems. In W. Bijker, T. Hughes, & T. Pinch (Eds.), *The Social Construction of Technological Systems; New Directions in the Sociology and History of Technology.* (New Direct., pp. 51–82). Cambridge: IT Press.
- Rhyne, R. (1995). Field anomaly relaxation. *Futures*, *27*(6), 657–674. doi:10.1016/0016-3287(95)00032-R
- Strunz, S. (2014). The German energy transition as a regime shift. *Ecological Economics*, *100*, 150–158. doi:10.1016/j.ecolecon.2014.01.019
- Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. *Technological Forecasting and Social Change*, 73(4), 334–361. doi:10.1016/j.techfore.2005.06.005