

Institute for Advanced Sustainability Studies IASS in Potsdam

Demand Response in US Capacity and Ancillary Service Markets

Benjamin Bayer

Demand Response: Was können wir von Kalifornien lernen?, Energiewirtschaftliche Tagesfragen, 04-2014

Demand Response – sind die USA ein Vorbild für Deutschland?, IASS Working Paper, 06-2014

3

1. Structure of US electricity markets

2. Myths about demand response

- Demand response is a about managing flexible loads
- Demand response plays an important part in all market segments
- Demand response covers up to ten per cent of system peak load
- Demand response covers up to 50 per cent of ancillary services
- Demand response is the most cost effective flexibility option
- Demand response gets capacity payments
- Demand response is successful in the US because it is cost effective

3. Conclusions

1. Structure of US electricity markets

Energy market	Ancillary services market	Capacity market
Day-ahead	Regulation reserve	Generation
Intraday	Spinning reserve	Demand response
Real-time	Non-spinning reserve	

(New England, New York, PJM)

Markets tasks

	Energy market		Ancillary services market		
05	Intraday	Real-Time	Regulation	Spinning	Non-Spinning
Random fluctuation		X	×		
(<15min)		X	X		
Forecast errors	×	X			
(>15min)	X	X			
Contingencies	х	Х	х	х	x

DE	Energy market		Ancillary services market		
	Intraday		Primary	Secondary	Tertiary
Random fluctuation			х	х	
(<15min)					
Forecast errors	x				, v
(>15min)					X
Contingencies	х		x	x	x

2. Myths about demand response

Myth: Demand response is a about managing flexible loads

- Demand response is about managing flexible loads <u>and</u> on-site generation <u>and</u> occasionally also includes energy efficiency
- In practice only interruptible loads (as opposed to additional loads) play an important role

Myth: Demand response is an important resource in all market segments

- In PJM and New England, for example, over 90 per cent of the revenue streams for demand response are generated in the capacity market
- EnerNOC, the largest demand response provider in the U.S, noted that economic demand response makes up only 2 percent of its revenue.

Myth: Demand response covers up to ten per cent of system peak load

	РЈМ	New York	New England
Demand response	7.449	1.741	745
- Loads	5.713	*	446
- On-site generation	1.736	*	299
Unforced capacity requirement	157.489	35.076	31.965
- Share of loads	3,6%	*	1,4%

* no data available

numbers in MW

Myth: Demand response covers up to 50 per cent of ancillary services

	PJM	Texas	Kalifornien	New England	New York
Regulation Reserve	Х	Х			Х
Spinning Reserve	Х	Х			Х
Non-Spinning Reserve		Х	x		х

Texas – Spinning R	eserve
Average participation of	900-1.300
demand resources[MW]	(32–46%)

	2010	2011	2012	2013
Call-ups	5	7	3	3
Call-up duration				
(hours)	3	15	1	1

Myth: Demand response is the most cost effective flexibility option

	PJM	New York	New England	
Capacity payments	Auction			
[USD/MW-year]	18.730 - 98.640			
Energy payments	Locational marginal price / energy offer			
[USD/MWh]	1.500	500	500	

Myth: Demand response is actively participation in the market

Capacity year	Max. call-up duration per year [hours]			Max. ca	all-up freque	ncy per year
	PJM	New York	New England	PJM	New York	New England
2009/2010	1	4	2.5	1	1	1
2010/2011	20	16	0	→ 4	2	0
2011/2012	10	15	7	2	3	2
2012/2013	4	→ 28	3	2	4	1

Myth: Demand response gets capacity payments

• The capacity payments corresponds to a refund of the capacity levy already paid.

15

Myth: Demand response is successful because it is cost effective

- Demand response programs serve as an indirect subsidy for domestic industry, which was to be kept from leaving the state.
- The system benefits sometimes played a minor role, and the design of the demand response programs meant that loads were practically never curtailed.

3. Conclusions

Institute for Advanced Sustainability Studies e.V.

Demand Response in the US and implications for Germany

Demand response in capacity markets

- DR programs are not an enabler for "flexibility"
- DR programs may have a (small) economic benefit
- DR programs may be of great significance from an industrial viewpoint

Demand response in ancillary services markets

Purpose of spinning reserve is not comparable to Germany's ancillary services

Contact

Benjamin Bayer Junior Fellow benjamin.bayer@iass-potsdam.de

Institute for Advanced Sustainability Studies e.V. Berliner Straße 130 D – 14467 Potsdam Web: <u>www.iass-potsdam.de</u>

• Load shifting is hardly possible due to high usage rate of industrial processes

	von Scheven und Prelle	Paulus und Boggrefe	Klobasa
	(VDE report)	(DENA report)	
Aluminum	Sheddable (load shifting	Sheddable	Shiftable
	partly possible)		
Chlorine	Sheddable	Sheddable (load shifting	Shiftable
		partly possible)	
Paper	Sheddable	Shiftable	Shiftable
Steel	Sheddable	Sheddable	Shiftable
Cement	Shiftable	Sheddable (load shifting	Shiftable
		partly possible)	

 Sheddable loads face high variable costs (opportunity costs / costs of lost load)

	Gruber et al.	Paulus et al.		Praktiknjo
Chlorine	96	> 100	Chemicals	870 - 1190
Aluminum	164	500 - 1,500	Pig iron, Steel, non-ferrous metals,	620 - 1080
Cement	317	400 - 1,000	Crude and manufactured minerals	1750 - 3560
Paper	433		Wood pulp, paper, board,	470 – 820
Steel	392	> 2.000	Pig iron, Steel, non-ferrous metals,	620 - 1080

Numbers in Euro/MWh