Network Expansion to Mitigate Market Power - How Increased Integration Fosters Welfare

Strommarkttreffen
March 31, 2014

Alexander Zerrahn & Daniel Huppmann
Network Expansion Can Increase Welfare

European Commission, 2012

The European Union needs an internal energy market that is competitive, integrated and fluid, providing a solid backbone for electricity and gas flowing where it is needed. [...] Despite major advantages in recent years [...], more must be done to integrate markets, improve competition and respond to new challenges.
Network Expansion Can Increase Welfare

Network expansion from a social welfare perspective
An analysis of the European power exchange EPEX detects
- Without international congestion, welfare would have been higher by 250 million Euro in 2013
→ Pure efficiency gains

European Commission, 2012

The European Union needs an internal energy market that is competitive, integrated and fluid, providing a solid backbone for electricity and gas flowing where it is needed. [...] Despite major advantages in recent years [...] more must be done to integrate markets, improve competition and respond to new challenges.
Network Expansion Can Increase Welfare

Network expansion from a social welfare perspective
An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
→ Pure efficiency gains

Network expansion from a political perspective
Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
→ Integration across national borders

European Commission, 2012
The European Union needs an internal energy market that is competitive, integrated and fluid, providing a solid backbone for electricity and gas flowing where it is needed. [...] Despite major advantages in recent years [...], more must be done to integrate markets, improve competition and respond to new challenges.
Network Expansion Can Increase Welfare

Network expansion from a social welfare perspective
An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
→ Pure efficiency gains

Network expansion from a political perspective
Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
→ Integration across national borders

Electricity generation in Europe remains concentrated
Market share of the biggest generator (EU 2012, Eurostat 2012)

- In ten MS above 70%
→ Can further integration mitigate this potential for market power exertion?

European Commission, 2012
The European Union needs an internal energy market that is competitive, integrated and fluid, providing a solid backbone for electricity and gas flowing where it is needed. [...] Despite major advantages in recent years [...], more must be done to integrate markets, improve competition and respond to new challenges
Research Agenda

What we want to answer
Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off
Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage III
ISO clears market and assigns nodal prices
Research Agenda

What we want to answer
Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off
Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage II
Strategic firms in Cournot competition

Stage III
ISO clears market and assigns nodal prices
Research Agenda

What we want to answer
Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off
Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage I
Social planner expands network

Stage II
Strategic firms in Cournot competition

Stage III
ISO clears market and assigns nodal prices
Actually, Weren’t such Issues Analyzed Before?

→ Yes, basically – our contribution consists in

Model

- *Endogenous* tradeoff between costs and welfare-effects of network expansion when strategic firms are present (Neuhoff et al, 2005)

Methods

- Application and extension of new method to solve this class of problems
- using properties from duality theory (Ruiz et al, 2012)

Identification of strategic effects/results

- Thin-line effect (Borenstein et al, 2000)
- Shift of rents
- Proactive planning (Pozo et al, 2013), overassessment of expansion needs
The First Stage Selects the Best Equilibrium

<table>
<thead>
<tr>
<th>Stage</th>
<th>Timing</th>
<th>Players and decisions</th>
</tr>
</thead>
</table>
| I | Network expansion | *Benevolent social planner*
| | | *Investment in network expansion* |
| II | Spot market | *Strategic generators*
| | | *Generation at each node* |
| III | | *Independent System Operator (ISO)*
| | | *Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits* |

Spot market: *Equilibrium Problem under Equilibrium Constraints*

→ **Stage II:** Strategic firms maximize profits (EP)

→ **Stage III:** subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures
The First Stage Selects the Best Equilibrium

<table>
<thead>
<tr>
<th>Stage</th>
<th>Timing</th>
<th>Players and decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Network expansion</td>
<td>Benevolent social planner
Investment in network expansion</td>
</tr>
<tr>
<td>II</td>
<td>Spot market</td>
<td>Strategic generators
Generation at each node</td>
</tr>
<tr>
<td>III</td>
<td>Spot market</td>
<td>Independent System Operator (ISO)
Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits</td>
</tr>
</tbody>
</table>

Spot market: *Equilibrium Problem under Equilibrium Constraints*
→ **Stage II**: Strategic firms maximize profits (EP)
→ **Stage III**: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures
Solution: Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

- Necessary optimality conditions can explicitly be derived
- However, they describe a multitude of potential equilibria
The First Stage Selects the Best Equilibrium

<table>
<thead>
<tr>
<th>Stage</th>
<th>Timing</th>
<th>Players and decisions</th>
</tr>
</thead>
</table>
| I | Network expansion | Benevolent social planner
| | | Investment in network expansion |
| II | Spot market | Strategic generators
| | | Generation at each node |
| III | Spot market | Independent System Operator (ISO)
| | | Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits |

Spot market: *Equilibrium Problem under Equilibrium Constraints*

→ **Stage II:** Strategic firms maximize profits (EP)
→ **Stage III:** subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures

Solution: Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

- Necessary optimality conditions can explicitly be derived
- However, they describe a multitude of potential equilibria

Stage I serves as selection device

→ Welfare-maximizing planner expands network
→ Selects the best out of all feasible solutions
A Three-Node Network to Illustrate the Model

- Simple network to demonstrate all prevailing strategic effects
- Assumption of nodal prices

Topology
- Three nodes
- Three lines

Generation
- Two strategic plants
- Zero production costs
- No competitive fringe

Demand
- Linear elastic demand
- Only in one node

\[
P_1 = 10 - q_1
\]
\[
c_2 = 0
\]
\[
c_3 = 0
\]
\[
f_3^{\text{max}} = 3
\]
\[
f_2^{\text{max}} = 1
\]
\[
f_1^{\text{max}} = 0.5
\]
Network Expansion Can Increase Welfare

We calculate a benchmark without expansion, and three solution candidates

<table>
<thead>
<tr>
<th></th>
<th>Benchmark No Expansion</th>
<th>Asymmetric</th>
<th>Cournot Instable</th>
<th>Cournot Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm 2</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>firm 3</td>
<td>1.5</td>
<td>5</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>line 1</td>
<td>0.5</td>
<td>1.67</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>(0.5 + 0)</td>
<td>(0.5 + 1.17)</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(1 + 0)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
</tr>
<tr>
<td>line 3</td>
<td>3</td>
<td>3</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(3 + 0)</td>
<td>(3 + 0)</td>
<td>(3 + 0.33)</td>
<td>(3 + 0.33)</td>
</tr>
<tr>
<td>Total expansion</td>
<td>0</td>
<td>3.5</td>
<td>2.67</td>
<td>2.97</td>
</tr>
</tbody>
</table>

→ **Benchmark**: Passive-aggressive equilibrium (Borenstein et al, 2000)
Network Expansion Can Increase Welfare

We calculate a benchmark without expansion, and three solution candidates

<table>
<thead>
<tr>
<th></th>
<th>Benchmark No Expansion</th>
<th>Asymmetric</th>
<th>Cournot Instable</th>
<th>Cournot Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm 2</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>firm 3</td>
<td>1.5</td>
<td>5</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Network capacity (initial + expansion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>0.5</td>
<td>1.67</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>(0.5 + 0)</td>
<td>(0.5 + 1.17)</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(1 + 0)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
</tr>
<tr>
<td>line 3</td>
<td>3</td>
<td>3</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(3 + 0)</td>
<td>(3 + 0)</td>
<td>(3 + 0.33)</td>
<td>(3 + 0.33)</td>
</tr>
<tr>
<td>Total expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>−0.5</td>
<td>−1.67</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>line 3</td>
<td>−0.5</td>
<td>−1.67</td>
<td>−3.33</td>
<td>−3.33</td>
</tr>
<tr>
<td>Welfare total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.88</td>
<td>34</td>
<td>41.78</td>
<td>41.48</td>
</tr>
</tbody>
</table>

→ **Benchmark:** Passive-aggressive equilibrium (Borenstein et al, 2000)
→ **Asymmetric:** Passive-aggressive equilibrium
Network Expansion Can Increase Welfare

We calculate a benchmark without expansion, and three solution candidates

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Asymmetric</th>
<th>Cournot Instable</th>
<th>Cournot Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm 2</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>firm 3</td>
<td>1.5</td>
<td>5</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Network capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>0.5</td>
<td>1.67</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>(0.5 + 0)</td>
<td>(0.5 + 1.17)</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(1 + 0)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
</tr>
<tr>
<td>line 3</td>
<td>3</td>
<td>3</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(3 + 0)</td>
<td>(3 + 0)</td>
<td>(3 + 0.33)</td>
<td>(3 + 0.33)</td>
</tr>
<tr>
<td>Total expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>0</td>
<td>3.5</td>
<td>2.67</td>
<td>2.97</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>line 3</td>
<td>−0.5</td>
<td>−1.67</td>
<td>−3.33</td>
<td>−3.33</td>
</tr>
<tr>
<td>Welfare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>13.88</td>
<td>34</td>
<td>41.78</td>
<td>41.48</td>
</tr>
</tbody>
</table>

→ **Benchmark**: Passive-aggressive equilibrium (Borenstein et al, 2000)
→ **Asymmetric**: Passive-aggressive equilibrium
→ **Cournot Instable**: Optimistic and pessimistic solutions
Network Expansion Can Increase Welfare

We calculate a benchmark without expansion, and three solution candidates

<table>
<thead>
<tr>
<th></th>
<th>Benchmark No Expansion</th>
<th>Asymmetric</th>
<th>Cournot Instable</th>
<th>Cournot Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm 2</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>firm 3</td>
<td>1.5</td>
<td>5</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Network capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>0.5</td>
<td>1.67</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>(0.5 + 0)</td>
<td>(0.5 + 1.17)</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(1 + 0)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
<td>(1 + 2.33)</td>
</tr>
<tr>
<td>line 3</td>
<td>3</td>
<td>3</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(3 + 0)</td>
<td>(3 + 0)</td>
<td>(3 + 0.33)</td>
<td>(3 + 0.33)</td>
</tr>
<tr>
<td>Total expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>−0.5</td>
<td>−1.67</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>line 2</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>line 3</td>
<td>−0.5</td>
<td>−1.67</td>
<td>−3.33</td>
<td>−3.33</td>
</tr>
<tr>
<td>Network flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>13.88</td>
<td>34</td>
<td>41.78</td>
<td>41.48</td>
</tr>
<tr>
<td>line 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ **Benchmark:** Passive-aggressive equilibrium (Borenstein et al, 2000)
→ **Asymmetric:** Passive-aggressive equilibrium
→ **Cournot Instable:** Optimistic and pessimistic solutions
→ **Cournot Stable:** Best attainable solution, thin-line effect

Result 1

Network expansion can increase welfare
Consequences for the Distribution of Welfare Gains

Who wins? Who loses?
Compare the no expansion benchmark with the...

Asymmetric equilibrium
→ Producers & consumers gain
→ Aggressive firm remains in its position
Consequences for the Distribution of Welfare Gains

Who wins? Who loses?
Compare the no expansion benchmark with the...

Asymmetric equilibrium
→ Producers & consumers gain
→ Aggressive firm remains in its position

Cournot Stable
→ Producers & consumers gain
→ Previously aggressive firm loses
→ Previously passive firm gains
→ Consumers gains more than producers

Result II
Network expansion can increase welfare, and entails a relative shift of rents from producers to consumers
What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

<table>
<thead>
<tr>
<th>Expansion</th>
<th>Welfare</th>
<th>Competitive market</th>
<th>Strategic firms (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No expansion</td>
<td>Welfare</td>
<td>21.88</td>
<td>13.88</td>
</tr>
<tr>
<td>Expansion</td>
<td>Welfare</td>
<td>44.5</td>
<td>41.48</td>
</tr>
<tr>
<td>Network capacity (initial + expansion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 1</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
<td></td>
</tr>
<tr>
<td>line 2</td>
<td>(1 + 3.75)</td>
<td>(1 + 2.33)</td>
<td></td>
</tr>
<tr>
<td>line 3</td>
<td>(3 + 1.25)</td>
<td>(3 + 0.33)</td>
<td></td>
</tr>
<tr>
<td>Total expansion</td>
<td></td>
<td>5</td>
<td>2.97</td>
</tr>
</tbody>
</table>

In the optimum
→ More expansion, less welfare gain
What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

<table>
<thead>
<tr>
<th>No expansion</th>
<th>Welfare</th>
<th>Competitive market</th>
<th>Strategic firms (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>21.88</td>
<td>13.88</td>
</tr>
<tr>
<td>Expansion</td>
<td>Welfare</td>
<td>44.5</td>
<td>41.48</td>
</tr>
<tr>
<td></td>
<td>line 1</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Network capacity</td>
<td>(0.5 + 0)</td>
<td>(0.5 + 0.3)</td>
</tr>
<tr>
<td></td>
<td>line 2</td>
<td>4.75</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(1 + 3.75)</td>
<td></td>
<td>(1 + 2.33)</td>
</tr>
<tr>
<td></td>
<td>line 3</td>
<td>4.25</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>(3 + 1.25)</td>
<td></td>
<td>(3 + 0.33)</td>
</tr>
<tr>
<td></td>
<td>Total expansion</td>
<td>5</td>
<td>2.97</td>
</tr>
</tbody>
</table>

In the optimum
→ More expansion, less welfare gain

The counterfactual
→ Network does not admit equilibrium solution
→ ... interpretation?

Result III
Neglecting strategic firms yields overassessment and undervaluation of expansion needs
Thank you very much for the attention
Network Expansion, Market Power, and Welfare

The Three-Stage Model

Results for a Three-Node Network

Literature

- ACER/CEER. Annual Report on the Results of Monitoring the Internal Electricity and Natural Gas Markets in 2012, 2013

All pictograms under public domain free licence (Wikimedia Commons)
Backup - Solution of the EPEC

Stage II: Equilibrium Problem
Strategic firms maximize profits in Cournot competition

\[\forall i, \max_{g_i} \Pi (g_i, g_{-i}) \quad \text{s.t.} \quad 0 \leq g_i \leq g_i^{\text{max}} \quad (\kappa) \]

subject to market clearing by the ISO

Stage III; Equilibrium Constraints

\[\max \text{ Welfare} (g, d, \delta) \quad \text{s.t.} \quad \text{Nodal Balance} (g, d, \delta) = 0 \quad (p_n) \quad \forall n \]

\[\text{Feasible Flows} (\delta) \leq 0 \quad (\mu_l) \quad \forall l \]

Procedure:
Transform stage III problem into equilibrium constraints we can work with

\[\frac{\partial \text{Welfare}}{\partial g} + p_n \frac{\partial \text{Nodal Balance}}{\partial g} \geq 0 \quad g \geq 0 \]

\[\frac{\partial \text{Welfare}}{\partial d} + p_n \frac{\partial \text{Nodal Balance}}{\partial d} \geq 0 \quad d \geq 0 \]

\[\frac{\partial \text{Welfare}}{\partial \delta} + p_n \frac{\partial \text{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \text{Feasible Flows}}{\partial \delta} = 0 \quad \delta \geq 0 \]

\[\text{Nodal Balance} (g, d, \delta) = 0 \quad p_n \quad \forall n \]

\[-\text{Feasible Flows} (\delta) \geq 0 \quad \mu \geq 0 \]
Backup - Solution of the EPEC

Spot market: EPEC

\[\forall i, \max_{g_i} \Pi(g_i, g_{-i}) \quad \text{s.t.} \quad 0 \leq g_i \leq g_i^{\text{max}} \quad (\kappa), \]

\[\frac{\partial \text{Welfare}}{\partial g} + p_n \frac{\partial \text{Nodal Balance}}{\partial g} \geq 0 \quad \perp \quad g \geq 0 \]

\[\frac{\partial \text{Welfare}}{\partial d} + p_n \frac{\partial \text{Nodal Balance}}{\partial d} \geq 0 \quad \perp \quad d \geq 0 \]

\[\frac{\partial \text{Welfare}}{\partial \delta} + p_n \frac{\partial \text{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \text{Feasible Flows}}{\partial \delta} = 0 \quad \perp \delta \]

\[\text{Nodal Balance} (g, d, \delta) = 0 \quad \perp p_n \quad \forall n \]

\[-\text{Feasible Flows} (\delta) \geq 0 \quad \perp \mu \geq 0 \]

Here’s the problem:

- Stage II equilibrium problem subject to an MCP
- i.e. to nonconvex equilibrium constraints
- Necessary conditions cannot be derived explicitly
Backup - Solution of the EPEC

Reformulate Equilibrium Constraints such that bilinearities vanish

- Set up dual problem for stage III
- By definition, solution of the dual problem is no larger than solution of the primal
- The reverse inequality must hold as constraint

→ All vectors fulfilling the following constraints

\[
\begin{align*}
\text{Nodal Balance} & \quad (g, d, \delta) = 0 \quad (p_n) \quad \forall n \\
\text{Feasible Flows} & \quad (\delta) \leq 0 \quad (\mu_l) \quad \forall l \\
\text{Dual Constraints} & \quad \leq 0 \quad (\nu) \\
\text{Primal} & \quad (g, d, \delta) - \text{Dual}(p, \mu) \leq 0 \quad (\xi)
\end{align*}
\]

describe the stage III equilibrium constraints without bilinearities

- The first two (in)equalities comprise all feasible vectors for the primal problem
- The third inequality comprises all feasible vectors for the dual problem
- The primal-dual inequality ensures optimality

→ Solution space for the strategic firms' optimization problem