EU Climate and Energy Policy beyond 2020: How Many Targets and Instruments Are Necessary?

P. Lehmann, E. Gawel, S. Strunz (UFZ, Economics Dept)
J. Sijm (Energy Research Centre of the Netherlands, ECN)
U. Chewpreecha, H. Pollitt (Cambridge Econometrics, CE)

Strommarkt treffen, Berlin, 1. April 2014
Outline

- Introduction
- Rationales for renewables targets
- Model
- Results
- Conclusion
EU Targets 2020 and 2030

Greenhouse gas emissions (GHG) compared to 1990
- 20%
allocated amongst Member States
- 40%
allocated amongst Member States

Share of renewables energy sources (RES) in total energy consumption
+ 20%
allocated amongst Member States
+ 27%

Reduction in energy consumption compared to projections
- 20%

➡️ Justification: Additional targets impair the cost-effectiveness of GHG mitigation
Contributions of our Paper

Literature …

- discusses the **welfare loss** of an additional RES policy in a **first-best** setting with a **GHG externality** only …
- for **2020** targets …
- using **optimization** models.

(Bernard and Vielle, 2009; Boeters and Koornneef, 2011; Böhringer et al., 2009a,b; Capros et al., 2008; Kretschmer et al., 2009; Tol, 2012)

Our paper …

- discusses the **costs and benefits** of an additional RES policy in a **second-best** setting with **multiple market** and **policy failures** …
- for **2030** targets …
- using **theoretical** analysis and an **econometric** decision-making model.
Outline

- Introduction
- Rationales for renewables targets
- Model
- Results
- Conclusion
Rationales for Renewables Targets and Instruments in the Electricity Sector

- **Objectives**: Targets
- **Instruments**: Efficiency rationales, Second-best rationales, First-best rationale, Rationales beyond efficiency
- **Market failure**: GHG emissions externality, Other environ. externalities, Externalities of fossil fuel imports, Technology market failures
- **Climate change mitigation**: GHG emissions externality, Other environ. externalities, Security of energy supply, Technology development
- **Environ. and resource conservation**: GHG emissions externality, Other environ. externalities, Security of energy supply, Technology development
- **Security of energy supply**: GHG emissions externality, Other environ. externalities, Security of energy supply, Technology development
- **Promotion of green growth and jobs**: GHG emissions externality, Other environ. externalities, Security of energy supply, Technology development
- **Democratic energy supply**: GHG emissions externality, Other environ. externalities, Security of energy supply, Technology development

- **Rationales strengthened by path dependencies and lock-ins** (Unruh 2000, Kalkuhl et al. 2012)
Outline

- Introduction
- Rationales for renewables targets
- Model
- Results
- Conclusion
Energy-Environment-Economy Model at the Global level (E3MG)

- Econometric model
- 22 world regions (focus here on EU)
- 42 economic sectors
- Endogenous tech. change
FTT: Power Model

Integration of FTT: Power with E3MG model

- Simulation model of tech. diffusion
- 24 technologies
- 21 E3MG regions
- Dynamics: LBD, costs of natural resources, etc.
Basic Assumptions and Inputs

- Climate policies non-EU: no action beyond existing policies
- EU ETS
 - Allowance allocation: Auctioning (electricity sector), free of charge (otherwise)
 - No borrowing, but banking
 - Revenue recycling: lump-sum to households (increases wealth but not direct consumption levels, sensitivity analysis available)
 - Offsets (CDM/JI) allowed to certain extent
 - Coverage: as of 2009, excluding aviation
Outline

- Introduction
- Rationales for renewables targets
- Model

- Results

- Conclusion
Policy Scenarios

- Baseline scenario S0: PRIMES 2009 projections + IEA World Energy Outlook
- Targets under consideration derived from Knopf et al. (2013)

<table>
<thead>
<tr>
<th>Targets</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG target</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ETS cap (MtCO₂)</td>
<td>1136</td>
<td>626</td>
<td>1136</td>
<td>1136</td>
</tr>
<tr>
<td>RES target</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RES-E share</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruments</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU ETS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CO₂ price (€/CO₂)</td>
<td>100</td>
<td>440</td>
<td>53</td>
<td>41</td>
</tr>
<tr>
<td>RES-E support</td>
<td>No</td>
<td>No</td>
<td>Tech. neutral</td>
<td>Tech. specific</td>
</tr>
<tr>
<td>Average RES subsidy (€/MWh)</td>
<td>-</td>
<td>-</td>
<td>16.00</td>
<td>24.50</td>
</tr>
</tbody>
</table>

Exogenously set values
Costs of an Additional RES Target

Macro-Economic Outcomes

- Effects generally small and even positive
- Reasons:
 - Small share of ETS sectors in GDP
 - Small share of energy and CO\textsubscript{2} costs in total costs of manufacturers
 - Unemployed resources

<table>
<thead>
<tr>
<th>% change compared to baseline</th>
<th>GDP</th>
<th>Investment</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO2/ETS only)</td>
<td>-0.30</td>
<td>-0.32</td>
<td>-0.06</td>
</tr>
<tr>
<td>S3 (CO2 and RES-E1)</td>
<td>-0.25</td>
<td>0.08</td>
<td>-0.06</td>
</tr>
</tbody>
</table>
Costs of an Additional RES Target
Average Levelized Costs of Electricity

[in €/MWh, 2010 prices]

<table>
<thead>
<tr>
<th></th>
<th>Average LCOE, excluding carbon costs and RES-E subsidies</th>
<th>Average LCOE, including carbon costs</th>
<th>Average LCOE, including carbon costs and RES-E subsidies</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO2/ETS only)</td>
<td>69</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>S3 (CO2 and RES-E1)</td>
<td>76</td>
<td>85</td>
<td>69</td>
</tr>
</tbody>
</table>
Benefits of an Additional RES Target
Second-Best Means for CO₂ Mitigation?

- ETS sector emissions driven by ETS only
- Non-ETS emissions may be affected

<table>
<thead>
<tr>
<th></th>
<th>EU ETS</th>
<th>Non-EU ETS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO₂/ETS only)</td>
<td>-24.9</td>
<td>-2.6</td>
<td>-11.1</td>
</tr>
<tr>
<td>S3 (CO₂ and RES-E1)</td>
<td>-24.9</td>
<td>-2.2</td>
<td>-10.8</td>
</tr>
</tbody>
</table>
Benefits of an Additional RES Target
Second-Best Means for CO$_2$ Mitigation?

- Additional RES target brings down CO$_2$ price if addressed by additional RES instrument.
- Makes attainment of CO$_2$ target more likely from a politico-economy perspective (Gawel et al. 2014).

![Graph showing CO$_2$ price trends up to 2030 for different scenarios.](image-url)

<table>
<thead>
<tr>
<th>Year</th>
<th>S1 (CO2/ETS only)</th>
<th>S3 (CO2 and RES-E1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2020</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>2025</td>
<td>44</td>
<td>30</td>
</tr>
<tr>
<td>2030</td>
<td>100</td>
<td>53</td>
</tr>
</tbody>
</table>
Benefits of an Additional RES Target
Second-Best Means for Environmental Protection?

- Ambiguous effects
 - Nuclear is further reduced
 - Coal increases, gas decreases

- Explanations:
 - Reduced elec. consumption
 - „Green serves the dirtiest“

<table>
<thead>
<tr>
<th></th>
<th>Nuclear</th>
<th>Coal</th>
<th>CCGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO2/ETS only)</td>
<td>7</td>
<td>-163</td>
<td>-186</td>
</tr>
<tr>
<td>S3 (CO2 and RES-E1)</td>
<td>-199</td>
<td>-152</td>
<td>-346</td>
</tr>
</tbody>
</table>
Benefits of an Additional RES Target
Second-Best Means for Energy Security?

- Additional RES target may even increase fuel imports
- But most likely only coal imports increase while gas imports decrease
- Positive for security of supply since gas is often imported from politically sensitive regions

<table>
<thead>
<tr>
<th></th>
<th>GDP</th>
<th>Investment</th>
<th>Employment</th>
<th>Consumer prices</th>
<th>EU imports of fossil fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO2/ETS only)</td>
<td>-0.30</td>
<td>-0.32</td>
<td>-0.06</td>
<td>0.48</td>
<td>-1.92</td>
</tr>
<tr>
<td>S3 (CO2 and RES-E1)</td>
<td>-0.25</td>
<td>0.08</td>
<td>-0.06</td>
<td>0.57</td>
<td>-1.12</td>
</tr>
</tbody>
</table>
Benefits of an Additional RES Target
Beyond Efficiency: Changes in Employment

EU sectoral employment 2030 (absolute differences from baseline)

- RES target hardly with positive effects on sectoral employment
- weak „green job“ benefits

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Utilities mining</th>
<th>Manuf. industry</th>
<th>Construction</th>
<th>Distrib. and retails</th>
<th>Transport</th>
<th>Busin. services</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (CO2/ETS only)</td>
<td>-2,7</td>
<td>-54,6</td>
<td>1,6</td>
<td>-11,6</td>
<td>-16,8</td>
<td>0,1</td>
<td>-47,3</td>
</tr>
<tr>
<td>S3 (CO2 and RES-E1)</td>
<td>0,4</td>
<td>-53,6</td>
<td>-4,1</td>
<td>6,2</td>
<td>-28,5</td>
<td>1,1</td>
<td>-50,0</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Rationales for renewables targets
- Model
- Results
- Conclusion
Conclusions

- There are multiple possible rationales for implementing RES targets and instruments in addition to GHG targets and instruments in the EU.

- Quantitative assessment confirms several but not all second-best benefits.

- The economic assessment is constrained by uncertainties und hinges on individual preferences of the decision maker.

- Therefore, the eventual decision can only be taken politically.
Thank you!