

Network Expansion to Mitigate Market Power - How Increased Integration Fosters Welfare

Strommarkttreffen March 31, 2014

Alexander Zerrahn & Daniel Huppmann

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

Network expansion from a political perspective

Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
- \rightarrow Integration across national borders

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

Network expansion from a political perspective

Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
- \rightarrow Integration across national borders

Electricity generation in Europe remains concentrated

Market share of the biggest generator (EU 2012, Eurostat 2012)

- In ten MS above 70%
- \rightarrow Can further integration mitigate this potential for market power exertion?

European Commission, 2012

Research Agenda

What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off

Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage III ISO clears market and assigns nodal prices

Research Agenda

What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off

Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage II Strategic firms in Cournot competition

Stage III ISO clears market and assigns nodal prices

Research Agenda

What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

The trade-off

Costs of network expansion vs. benefits of network expansion by reduced market power

To this end, we develop a three-stage model

Stage I Social planner expands network

Stage II Strategic firms in Cournot competition

Stage III ISO clears market and assigns nodal prices

Actually, Weren't such Issues Analyzed Before?

 \rightarrow Yes, basically – our contribution consists in

Model

- Endogenous tradeoff between costs and welfare-effects of network expansion
- when strategic firms are present (Neuhoff et al, 2005)

Methods

- Application and extension of new method to solve this class of problems
- using properties from duality theory (Ruiz et al, 2012)

Identification of strategic effects/results

- Thin-line effect (Borenstein et al, 2000)
- Shift of rents
- Proactive planning (Pozo et al, 2013), overassessment of expansion needs

The First Stage Selects the Best Equilibrium

Stage	Timing	Players and decisions
	Natural, aunomoion	Benevolent social planner
1	Network expansion	Investment in network expansion
		Strategic generators
		Generation at each node
-	Spot market	Independent System Operator (ISO)
111		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures

The First Stage Selects the Best Equilibrium

Stage	Timing	Players and decisions
	Network expansion	Benevolent social planner
		Investment in network expansion
		Strategic generators
		Generation at each node
-	Spot market	Independent System Operator (ISO)
111		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures **Solution:** Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

- Necessary optimality conditions can explicitly be derived
- However, they describe a multitude of potential equilibria

The First Stage Selects the Best Equilibrium

Stage	Timing	Players and decisions		
	Natural, aunomoion	Benevolent social planner		
1	Network expansion	Investment in network expansion		
		Strategic generators		
	Spot market	Generation at each node		
-		Independent System Operator (ISO)		
111		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits		

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures **Solution:** Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

- Necessary optimality conditions can explicitly be derived
- However, they describe a multitude of potential equilibria

Stage I serves as selection device

- \rightarrow Welfare-maximizing planner expands network
- \rightarrow Selects the best out of all feasible solutions

A Three-Node Network to Illustrate the Model

- Simple network to demonstrate all prevailing strategic effects
- Assumption of nodal prices

Topology

 \rightarrow Three nodes

 \rightarrow Three lines

Generation

- \rightarrow Two strategic plants
- \rightarrow Zero production costs
- \rightarrow No competitive fringe

Demand

- \rightarrow Linear elastic demand
- \rightarrow Only in one node

Pictograms under public domain free licence

We calculate a benchmark without expansion, and three solution candidates

		Benchmark No Expansion	Asymmetric	Cournot Instable	Cournot Stable
	firm 2	0	0	3.33	3.33
Generation	firm 3	1.5	5	3.33	3.33
	line 1	0.5	1.67	0.5	0.8
	line 1	(0.5 + 0)	(0.5 + 1.17)	(0.5 + 0)	(0.5 + 0.3)
Network capacity	line 2	1	3.33	3.33	3.33
(initial + expansion)		(1 + 0)	(1 + 2.33)	(1 + 2.33)	(1 + 2.33)
	line 3	3	3	3.33	3.33
		(3 + 0)	(3 + 0)	(3 + 0.33)	(3 + 0.33)
Total expansion		0	3.5	2.67	2.97
	line 1	-0.5	-1.67	0	0
Network flows	line 2	1	3.33	3.33	3.33
	line 3	-0.5	-1.67	-3.33	-3.33
Welfare	total	13.88	34	41.78	41.48

→ Benchmark: Passive-aggressive equilibrium (Borenstein et al, 2000)

We calculate a benchmark without expansion, and three solution candidates

		Benchmark No Expansion	Asymmetric	Cournot Instable	Cournot Stable
Constitut	firm 2	0	0	3.33	3.33
Generation	firm 3	1.5	5	3.33	3.33
	line 1	0.5	1.67	0.5	0.8
	line 1	(0.5 + 0)	(0.5 + 1.17)	(0.5 + 0)	(0.5 + 0.3)
Network capacity	line 2	1	3.33	3.33	3.33
(initial + expansion)		(1 + 0)	(1 + 2.33)	(1 + 2.33)	(1 + 2.33)
	line 3	3	3	3.33	3.33
		(3 + 0)	(3 + 0)	(3 + 0.33)	(3 + 0.33)
Total expansion		0	3.5	2.67	2.97
	line 1	-0.5	-1.67	0	0
Network flows	line 2	1	3.33	3.33	3.33
	line 3	-0.5	-1.67	-3.33	-3.33
Welfare	total	13.88	34	41.78	41.48

- \rightarrow Benchmark: Passive-aggressive equilibrium (Borenstein et al, 2000)
- \rightarrow Asymmetric: Passive-aggressive equilibrium

We calculate a benchmark without expansion, and three solution candidates

		Benchmark No Expansion	Asymmetric	Cournot Instable	Cournot Stable
C	firm 2	0	0	3.33	3.33
Generation	firm 3	1.5	5	3.33	3.33
	line 1	0.5	1.67	0.5	0.8
	line 1	(0.5 + 0)	(0.5 + 1.17)	(0.5 + 0)	(0.5 + 0.3)
Network capacity	line 2	1	3.33	3.33	3.33
(initial + expansion)		(1 + 0)	(1 + 2.33)	(1 + 2.33)	(1 + 2.33)
	line 3	3	3	3.33	3.33
		(3 + 0)	(3 + 0)	(3 + 0.33)	(3 + 0.33)
Total expansion		0	3.5	2.67	2.97
	line 1	-0.5	-1.67	0	0
Network flows	line 2	1	3.33	3.33	3.33
	line 3	-0.5	-1.67	-3.33	-3.33
Welfare	total	13.88	34	41.78	41.48

- \rightarrow Benchmark: Passive-aggressive equilibrium (Borenstein et al, 2000)
- \rightarrow Asymmetric: Passive-aggressive equilibrium
- \rightarrow Cournot Instable: Optimistic and pessimistic solutions

We calculate a benchmark without expansion, and three solution candidates

		Benchmark No Expansion	Asymmetric	Cournot Instable	Cournot Stable
	<i>c</i> 0			2.02	2.00
Generation	firm 2	0	0	3.33	3.33
Generation	firm 3	1.5	5	3.33	3.33
	line 1	0.5	1.67	0.5	0.8
	line 1	(0.5 + 0)	(0.5 + 1.17)	(0.5 + 0)	(0.5 + 0.3)
Network capacity	line 2	1	3.33	3.33	3.33
(initial + expansion)		(1 + 0)	(1 + 2.33)	(1 + 2.33)	(1 + 2.33)
	line 3	3	3	3.33	3.33
		(3 + 0)	(3 + 0)	(3 + 0.33)	(3 + 0.33)
Total expansion		0	3.5	2.67	2.97
	line 1	-0.5	-1.67	0	0
Network flows	line 2	1	3.33	3.33	3.33
	line 3	-0.5	-1.67	-3.33	-3.33
Welfare	total	13.88	34	41.78	41.48

- → Benchmark: Passive-aggressive equilibrium (Borenstein et al, 2000)
- \rightarrow Asymmetric: Passive-aggressive equilibrium
- \rightarrow Cournot Instable: Optimistic and pessimistic solutions
- \rightarrow Cournot Stable: Best attainable solution, thin-line effect

Result I

Network expansion can increase welfare

Consequences for the Distribution of Welfare Gains

Who wins? Who loses?

Compare the no expansion benchmark with the...

Asymmetric equilibrium

- \rightarrow Producers & consumers gain
- \rightarrow Aggressive firm remains in its position

Results for a Three-Node Network $\circ \circ \circ \circ$

Consequences for the Distribution of Welfare Gains

Who wins? Who loses?

Compare the no expansion benchmark with the...

Asymmetric equilibrium

- \rightarrow Producers & consumers gain
- \rightarrow Aggressive firm remains in its position

Cournot Stable

- \rightarrow Producers & consumers gain
- \rightarrow Previously aggressive firm loses
- \rightarrow Previously passive firm gains
- \rightarrow Consumers gains more than producers

Result II

Network expansion can increase welfare, and entails a relative shift of rents from producers to consumers

What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

			Competitive market	Strategic firms (C)
No expansion	Welfare		21.88	13.88
	Welfare		44.5	41.48
	Network capacity (initial + expansion)	line 1	$0.5 \ (0.5 + 0)$	$0.8 \\ (0.5 + 0.3)$
Expansion		line 2	4.75 (1 + 3.75)	3.33 (1 + 2.33)
		line 3	4.25 (3 + 1.25)	3.33 (3 + 0.33)
	Total expansion		5	2.97

In the optimum

 \rightarrow More expansion, less welfare gain

What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

			Competitive market	Strategic firms (C)
No expansion	Welfare		21.88	13.88
	Welfare		44.5	41.48
	Network capacity (initial + expansion)	line 1	(0.5 + 0)	$0.8 \\ (0.5 + 0.3)$
Expansion		line 2	4.75 (1 + 3.75)	3.33 (1 + 2.33)
		line 3	4.25 (3 + 1.25)	3.33 (3 + 0.33)
	Total expansion		5	2.97

In the optimum

 \rightarrow More expansion, less welfare gain

The counterfactual

- \rightarrow Network does not admit equilibrium solution
- $\rightarrow \ldots$ interpretation?

Result III

Neglecting strategic firms yields overassessment and undervaluation of expansion needs

Thank you very much for the attention

DIW BERLIN

DIW Berlin – Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Literature

- EPEX Spot. Social Welfare Report 01-12/2013, 12 2013
- ACER/CEER. Annual Report on the Results of Monitoring the Internal Electricity and Natural Gas Markets in 2012, 2013
- European Commission. Energy, transport and environment Indicators 2012 edition. Publications Office of the European Union, 2012
- European Commission. Making the internal energy market work. Communication (2012) 663 final, November 2012
- K. Neuhoff, J. Barquin, M.G. Boots, A. Ehrenmann, B.F. Hobbs, F.A.M Rijkers, and M. Vazquez. Network-constrained Cournot models of liberalized electricity markets: the devil is in the details. Energy Economics, 27:495-525, 2005
- S. Borenstein, J. Bushnell, and S. Stoft. The Competitive Effects of Transmission Capacity in a Deregulated Electricity Industry. The RAND Journal of Economics, 31(2):294-325, Summer 2000
- D. Pozo, J. Contreras, and E. Sauma. If you build it, he will come: Anticipative power transmission planning. Energy Economics, 36:135-146, 2013
- C. Ruiz, Antonio J. Conejo, and Yves Smeers. Equilibria in an Oligopolistic Electricity Pool With Stepwise Offer Curves. IEEE Transactions on Power Sytems, 27(2):752-761, 2012

All pictograms under public domain free licence (Wikimedia Commons)

Results for a Three-Node Network 0000

Backup - Solution of the EPEC

Stage II: Equilibrium Problem

Strategic firms maximize profits in Cournot competition

$$orall i, \max_{g_i} \Pi(g_i, g_{-i})$$
 s.t. $0 \leq g_i \leq g_i^{max}$ (κ)

subject to market clearing by the ISO

Stage III; Equilibrium Constraints

$$\begin{array}{ll} \max \ \textit{Welfare} \left(g,d,\delta\right) \ \text{s.t.} \ \textit{Nodal Balance} \left(g,d,\delta\right) = 0 \quad (p_n) \quad \forall n \\ Feasible \ \textit{Flows} \left(\delta\right) \leq 0 \quad (\mu_l) \quad \forall l \end{array}$$

Procedure:

Transform stage III problem into equilibrium constraints we can work with

$$\begin{array}{l} \frac{\partial \textit{Welfare}}{\partial g} + p_n \frac{\partial \textit{Nodal Balance}}{\partial g} \geq 0 \perp g \geq 0\\ \frac{\partial \textit{Welfare}}{\partial d} + p_n \frac{\partial \textit{Nodal Balance}}{\partial d} \geq 0 \perp d \geq 0\\ \frac{\partial \textit{Welfare}}{\partial \delta} + p_n \frac{\partial \textit{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \textit{Feasible Flows}}{\partial \delta} = 0 \perp \delta\\ \textbf{Nodal Balance} \left(g, d, \delta\right) = 0 \perp p_n \quad \forall n\\ -\textit{Feasible Flows} \left(\delta\right) \geq 0 \perp \mu \geq 0 \end{array}$$

Backup - Solution of the EPEC

Spot market: EPEC

$$\begin{aligned} \forall i, \ \max_{g_i} \Pi\left(g_i, g_{-i}\right) & \text{s.t.} \ 0 \leq g_i \leq g_i^{max} \quad (\kappa), \\ & \frac{\partial \text{Welfare}}{\partial g} + p_n \frac{\partial \text{Nodal Balance}}{\partial g} \geq 0 \perp g \geq 0 \\ & \frac{\partial \text{Welfare}}{\partial d} + p_n \frac{\partial \text{Nodal Balance}}{\partial d} \geq 0 \perp d \geq 0 \\ & \frac{\partial \text{Welfare}}{\partial \delta} + p_n \frac{\partial \text{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \text{Feasible Flows}}{\partial \delta} = 0 \perp \delta \\ & \text{Nodal Balance} \left(g, d, \delta\right) = 0 \perp p_n \quad \forall n \\ & -\text{Feasible Flows} \left(\delta\right) \geq 0 \perp \mu \geq 0 \end{aligned}$$

Here's the problem:

- Stage II equilibrium problem subject to an MCP
- i.e. to nonconvex equilibrium constraints
- Necessary conditions cannot be derived explicitly

Backup - Solution of the EPEC

Reformulate Equilibrium Constraints such that bilinearities vansih

- Set up dual problem for stage III
- By definition, solution of the dual problem is no larger than solution of the primal
- The reverse inequality must hold as constraint
- \rightarrow All vectors fulfilling the following constraints

 $\begin{array}{ll} \textit{Nodal Balance}\left(g,d,\delta\right)=0 & (p_n) & \forall n\\ \textit{Feasible Flows}\left(\delta\right)\leq0 & (\mu_l) & \forall l\\ \textit{Dual Constraints}\leq0 & (\nu)\\ \textit{Primal}(g,d,\delta)-\textit{Dual}(p,\mu)\leq0 & (\xi) \end{array}$

describe the stage III equilibrium constraints without bilinearities

- The first two (in)equalities comprise all feasible vectors for the primal problem
- The third inequality comprises all feasible vectors for the dual problem
- The *primal-dual* inequality ensures optimality
- \rightarrow Solution space for the strategic firms' optimization problem