Influence of balancing reserves on the electricity infrastructure in Europe until 2050

Casimir Lorenz
TU Berlin, Workgroup for Infrastructure Policy
DIW Berlin, Department of Energy, Transportation, Environment
Agenda

1. Introduction
2. Model
3. Application
4. Results
Introduction

• EU wide target of up to 80-95% CO₂ emission reduction until 2050 that requires far-reaching transformation of the electricity generation infrastructure

• Possible pathways for the generation infrastructure have been subject of many analyses (PRIMES, LIMES, DIMENSION, etc.)

• Very few studies on the implications of balancing reserves
 – Pineda et al., 2016; Stiphout et al., 2014
 – Predict a need for a large conventional base load

• Very high shares of fluctuating RES will induce an increased demand for balancing reserves in the long term

• These reserves must be provided by either (non-)dispatchable generation technologies or storages that therefore have to reduce their possible production

• These interdependencies must be included when deciding upon the optimal level of fluctuating RES expansion

• Question: What are the influences of balancing reserves on the optimal electricity infrastructure investments?
Agenda

1. Introduction
2. Model
3. Application
4. Results
Model: Dynelmod

Scope: Europe (EU 28)

Objective: System cost minimization
 - Variable and fixed generation
 - Investment into generation, storage and grid

Investments: ten-year steps
 - 2015, 2020, 2030, 2040, 2050

Plant dispatch: hourly resolution
 - Variable set of calculated hours (1-8760) for full investment options (including scaling)
 - Post-Calculation with reduced investment options for 8760 hours

Boundary condition examples
 - Decommissioning of existing plants
 - Electricity demand development per country
 - CO₂-Budget over time
 - Market coupling method: NTC or Flow-Based
Model: Dynelmod

Balancing Demand:
- Historical demand for all countries as basis
- Additional demand for each additional MW of fluctuating RES

Balancing Reservation:
- Technology sharp reservation of capacities (no difference to block sharp if no integer constraints)
- Reduced production flexibility during reservation
 - Maximum production output
 - Minimum run constraints
 - Minimum storage level
- Reduction of transmission capacity for exchanges

Solution Method:
- Formulated in GAMS as a linear program
- Solved with GUROBI/BARRIER
Agenda

1. Introduction
2. Model
3. Application
4. Results
Application to a European Data Set:
- Originally plant-block and line-sharp data accuracy for all EU-28 countries, as well as Norway, Switzerland and the Balkan countries
- Hourly RES feed-in and load for 2012
- Investment cost based on Schröder et al. (2013), Pape et al. (2014) and Zerrahn and Schill (2015)

Aggregation to a country resolution
- One node per country
- Distances between geographical centers are used for transmission expansion cost calculation

Other boundary conditions regarding the long-term development of prices, load, and CO₂ emission path are based on EC’s “Energy Roadmap 2050 Impact Assessment and Scenario Analysis” scenario “Diversified supply technologies”
Application 2

- Technical and market developments are uncertain which influences the system costs of balancing provision
- Three scenarios summarize these possible developments:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Pessimistic</th>
<th>Conservative</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserve dimensioning</td>
<td>static/dynamic</td>
<td>static/dynamic</td>
<td>static/dynamic</td>
</tr>
<tr>
<td>Additional demand from RES</td>
<td>10%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>RES participation</td>
<td>5%</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Balancing exchanges</td>
<td>5%</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Storage commitment</td>
<td>24h</td>
<td>4h</td>
<td>1h</td>
</tr>
<tr>
<td>New exogenous nuclear plants</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- Each factor/assumption has a different impact
- The influence of each factor is therefore assessed against the *Pessimistic Scenario* in a further sensitivity analysis (not presented)
Agenda

1. Introduction
2. Model
3. Application
4. Results
Results: Installed capacity

- Installed capacity in GW
- Years: 2015, 2020, 2030, 2040, 2050
- Sources: NoBal, Pessimistic S, Pessimistic D, Conservative S, Conservative D
- Technologies: Geothermal, Storage, PSP, Reservoir, Sun, Wind, RoR, Biomass, Waste, Oil, Gas, Hard Coal, Lignite, Uran
Results: Difference in New Installed Capacity

Difference in New Installed Capacity [GW]

-400 -300 -200 -100 0 100 200 300

Pessimistic S Pessimistic D Conservative S Conservative D

2050

Geothermal
Storage
PSP
Reservoir
Sun
Wind
RoR
Biomass
Waste
Oil
Gas
Hard Coal
Lignite
Uran
Results: Balancing Cost

![Bar chart showing Balancing Cost in Billion € for different scenarios: Pessimistic S, Pessimistic D, Conservative S, and Conservative D. The chart indicates the cost breakdown by categories: Investment Storage, Investment Generation, Investment Grid, Generation, and Fix O&M.](chart.png)
Result: Positive Reserves
Result: Negative Reserves
Conclusion & Outlook

- Balancing reserves only have a large impact on the optimal long term electricity infrastructure when pessimistic assumptions regarding technology and market development are made.

- The effect is already reduced with conservative assumptions regarding the provision of balancing reserves (underestimation due to aggregate model type).

- (Battery) Storage is playing a major role for future positive balancing reserves.

- Dynamic reserve sizing can lower the cost and the influence of balancing reserves dramatically.

- Determination of additional balancing demand from renewables is still too complicated in a long term model due to non-lineairities and therefore sensitives are a better option.

- Reserve provision from transport and heat sector is still unclear.
Questions for you!

• How realistic is an 80 % share of storages for the provision of positive reserves?
• What is a realistic time horizon for storage capacity withholding for the provision of reserves?
• Is it realistic that those storages can recharge in that time period if the market is very short during long term shortage?

• Would the provision by reducing fluctuating RES be cheaper?
 • Li-Ion: 35 € per kW and 188€ per kWh in 2050
 • PV: 230 € per kW and FLH 1752
 • For 1 kW of (positive) reserves we need four times storage capacity and five times PV capacity
 • Result: 787 € / kW for Li-Ion vs 1150 € / kW for PV
 • This neglects:
 – Positive side effects of storages
 – Non-spinning OCGT can not provide FCR and aFRR
 – No cost for reserve provision during curtailment of RES

Thank You for Your Attention!

Claudio Casimir Lucas Lorenz
Workgroup for Economic and Infrastructure Policy (WIP) / DIW Berlin

Berlin University of Technology (TU Berlin)
School of Economics & Management (Fak. VII)
WIP Workgroup for Economic and Infrastructure Policy

Sekretariat H 33
Straße des 17. Juni 135
D-10623 Berlin

http://wip.tu-berlin.de
cl@wip.tu-berlin.de