Demand-side Flexibility with focus on Industry: potential, benefits and challenges

Sylvie Tarnai, Chief Strategy Officer
sylvie.tarnai@energy-pool.eu

Strommarkttreffen – 31 März 2023
A 13-year track record in Energy Flexibility Management

From a startup in curtailment to a Smart Energy Manager

Company founded by Olivier Baud

DEVELOPMENT

- **2009**: Startup
- **2010**: Demand Response operator
- **2012**: A solid grown-up company
- **2013**: New job: Smart Energy Manager of complex systems

SUCCESSES

- **2009**: Pioneer in the French Demand Response market
- **2010**: 1st curtailment in France
- **2013**: 1st operation of frequency containment regulation
- **2014**: Flexibility aggregator
- **2015**: A solid grown-up company
- **2017**: New job: Smart Energy Manager of complex systems
- **2018**: 1st battery flexibility monetization
- **2019**: 1st operation pooling multiple sites for frequency regulation
- **2020**: 1st large-scale microgrid implementation in Thailand
- **2021**: 1st H2 electrolysis flexibility monetization
- **2022**: V2G pilot project

Establishment of EP Turkey & EP Japan

- **2018**: TEPCO entering EP Japan’s capital

International acceleration

- **NL, KSA, Ivory coast**

Financial independence

- New Energy Pool

© Energy Pool Développement SAS – Strictly Confidential

- **© Energy Pool Développement SAS – Strictly Confidential**

250 employees

- **> 3000 assets managed by EP**

- **6 GW of capacity managed**
Energy Pool is delivering world-class services and solutions to maximise the value creation for our customers.

Flexibilities management & operational services
- Design of complex systems flexibilities, from real time to medium/long term
- Strategic advisory for maximizing revenues and reliability
- Technical enablement, contracting & 24/7 operations of aggregated portfolios

Software Solutions & microgrids
- Industrialized and Scalable Software solutions for distributed energy resources management
- Flexible solution adapted to different contexts: VPP, Demand response, microgrids, hybrid power plants
- Optional consulting and operation services

Consulting
- High level advisory on market design and regulatory
- Technology and economic feasibility expertise
- Operation design

Process Transformation and hybridization
- Advising end-users of electricity in their strategy to reduce CO2 emissions
- Design of hybridization & electrification plans, including flexibilities monetization
- Projects deployment and operations
What is Demand-Side Flexibility?

Demand-Side Management and associated costs from industry perspective

- Mecanism of reducing (or increasing) electric loads (demand) in response to electricity market system signals
- Cost-effective and sustainable type of Flexibility solution

Investment costs of flexibilisation in €/MW (eg. additional energy or material storage in the production site, technical connection/steering ability of assets through EMS)

Yearly fixed costs of flexibilisation in €/(MW)/y (IT, additional human resources...)

Activation costs in €/MWh (variable costs due to impact on production process, opportunity costs related to possibly lower production output)

Dedicated remuneration schemes and sufficient incentives are required for i) supporting industrial flexibilisation and ii) compensating activation costs
Demand-side Flexibility potential is diverse
Industry shows high potential and key challenges

Different sources of load flexibilities entail different constraints, are accessible at different remuneration levels and require adapted incentive schemes and support.

French daily load curve of a working day of February with cold temperatures (but no major cold wave)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Residential</th>
<th>Commercial / Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtailable process complexity</td>
<td>Curtailable process complexity</td>
<td>Curtailable process complexity</td>
</tr>
<tr>
<td>End-user cost & impact</td>
<td>End-user cost & impact</td>
<td>End-user cost & impact</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Huge stake to incentivize industrial flexibility: high investment costs vs. long-term competitiveness under increasing volatility assumption

14 GW
20-35 GW
30-45 GW

Source: RTE
The Demand-Side Flexibility potential Iceberg
Focus on industrial untapped and future Flexibility

- **Existing accessible flexibility potential**
 - Equipment & connectivity
 - Regulatory framework
 - Short-term economic incentives

- **Potential from flexibilisation**
 - Technical process transformation (eg. energy hybridisation)
 - Organisational process transformation
 - Long-term energy prices and return on investment

- **Additional potential from electrification**
 - « Built in » flexibility for new gigafactories (battery, H2 electrolyzers)
 - Increasing electric usages (e-mobility, data centers)

Key Success Factors to reveal additional Demand-Side Flexibility: economic incentives, change of production planning paradigm, automation and integration of DSM with manufacturing IT
Benefits for industrial consumers in a transitioning energy world
Positive impacts on energy cost and carbon footprint

Consumer’s flexibility can contribute to power system balancing and security of supply, aim at optimising consumption and thus energy costs (price opportunities), and support reducing the CO₂ emissions from energy.

Energy intensive industry (eg. a cement plant)

Different sources of flexibility

- Processes (eg. crusher)
- Batteries / Storage
- Decentralized production (CHP, PV)
- Fuel switch (hybridisation power/gas)

Load modulation

- CURTAILMENT: Consumption is temporarily reduced to support the grid frequency, balancing or redispatch
- STIMULATION: Consumption is shifted to benefit from lower prices on the power market

Feasibility (flex audit), automation, certification (1 to 9 months)

• Reduction of 5-25% of energy bill under French remuneration schemes
• Long-term higher cost optimization opportunities with load modulation based on RES generation
• Decarbonation of energy sourcing (supply mix including less marginal fossil fuels)
• Higher decarbonation impact in RES intensive energy system

© Energy Pool Développement SAS – Strictly Confidential
Load reduction delivered by Energy Pool to French TSO RTE on March 1st 2018

Benefit for the grid: peak-shaving example

- Cold wave in France
- Consumption peaks 90GW (11h)
- Very low system margins

438 MW (max) curtailed
Total energy requested by RTE 1,7 GWh on March 1st 2018

146 MW
146 MW
438 MW

Consumption peaks 90GW (11h)

106 sites participating
«Net Zero Carbon by 2050 » objective ➔ Japan target power generation mix for 2030 with share of RES doubling in 10 years.

Stake: maximize RES output utilization ➔ avoid frequent curtailment of PV farms in South and Western Japan on days with high PV output creating surpluses which cannot be absorbed by consumption, exports, or storage.

Load modulation as service to TEPCO enabling to integrate more RES

PV farms curtailments in Kyushu, 3rd May 2019

Wholesale market price at 0€/MWh

Energy Pool Japan in 2022

12,3 GWh load-reduction corresponding to 82 activations

119 GWh load stimulation corresponding to 54 activations

© Energy Pool Développement SAS – Strictly Confidential
Key challenges to unlock and develop industrial Flexibility
Regulatory and economic obstacles to be removed

- **Technical**
 - Electrification & hybridisation (engineering projects)
 - Automation and digitalization of processes incl. Energy management

- **Economic**
 - Financing electrification & flexibility projects in an industrial crisis context
 - Uncertainty on future price levels and volatility

- **Regulatory**
 - Removal of existing barriers (eg. Individual Grid tariffs § 19(2) Strom-NEV)
 - Dedicated remuneration schemes for low-carbon flexibility
 - Flexible tariffs & possibility for consumers to actively participate in markets

- **Cultural & societal**
 - Change of energy paradigm for consumers
 - Necessity to rethink optimization of production processes for competitiveness
The main challenge is a change of paradigm of our energy system:

DSM amounts to consuming better: when available, cheap, and carbon-free

CHALLENGE

Ensuring security of supply while balancing the power system at lowest cost and CO₂ emissions

Production ↔ Consumption?

BEFORE

Energy was abundant and cheap. No CO₂ constraint.

TOMORROW

World of energy scarcity and intermittency creating high price volatility.

Demand-side is part of the solution with storage & interconnections

Consumption determined Production

Production will determine Consumption
Meet with our teams throughout the world

Energy Pool HQ
20 rue Lac Majeur
Parc Ouragan – Bât. C
BP 90324
73377 Le Bourget-du-Lac Cedex – FRANCE
+33 (0)4 88 13 16 60

Energy Pool - Lyon office
Wojo Lyon Part-Dieu, Bât. Silex
15 rue des Cuirassiers
CS 33821
69487 Lyon Cedex 03 – FRANCE

Energy Pool Japan KK
Round-Cross Shiba Daimon 9F
1-3-4 Shiba Daimon, Minato-ku
Tokyo 105-0012
JAPAN
+ 81 (0)3-6432-0273

Energy Pool Turkey
Ebululah Mardin Cad.
Yıldırım Oğuz Göker Sok.
Park Maya Carlton 17 D:4
Akatlar İstanbul
TÜRKİYE
+90 (212) 912 1980

Energy Pool Netherlands
Evert van de Beekstraat 354
1118 CZ Amsterdam
NETHERLANDS
+31 6 43 45 04 51

www.energy-pool.eu
contact@energy-pool.eu