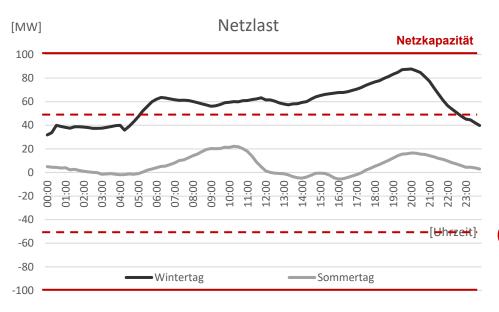

Krisenfeste Energietarif: für flexible Lasten

Christian Winzer winc@zhaw.ch

Danksagung

- Die vorliegenden Arbeiten wurden im Rahmend es <u>NETFLEX</u> Projektes und des <u>PATHFNDR</u> Projektes mit Unterstützung des Bundesamts für Energie durchgeführt.
- Für Inhalt und Schlussfolgerungen sind ausschliesslich die Autoren verantwortlich.


Bundesamt für Energie

- 1. Netztarif: Gestaltungsprinzipien
- 2. Netztarif: langfristig empfohlene Tarifdesigns
- 3. Netztarif: kurzfristig mögliche Tarifdesigns
- 4. Energietarif: Hedging durch Profilverträge
- 5. Ausblick

Tarifempfehlung: Flexibilität dort einsetzen, wo dies den höchsten Mehrwert bringt.

Überdimensionierung häufig ökonomisch sinnvoll, so dass Netz meist über ausreichend Kapazität verfügt. => siehe Pérez-Arriaga, 1995.

- 1 Kein Anreiz für Lastverschiebung bei ausreichender Netzkapazität: um Flexibilität zur Senkung Energiekosten etc. einzusetzen. => siehe Baldick, 2018; William Hogan & Susan Pope, 2017.
- 2 Schnelle, zuverlässige und ausreichende Lastanpassung bei Engpässen: durch automatische Lasteinschränkung.

Tarifempfehlung: Flexibilität dort einsetzen, wo dies den höchsten Mehrwert bringt.

Um Anforderungen 1 & 2 (vorherige Folie) zu erreichen, bedarf es:

- 3 Differenzierung Endkundenverträge gemäss Versorgungsqualität: da Endkunden andernfalls keinen Anreiz haben, weniger wertvolle Lasten im Vorfeld zu deklarieren und mit Steuer- und Regelsystemen für kurative Lasteinschränkung auszustatten.
- 4 Symmetrische Ausgestaltung für Aus- und Einspeisung: um bei Überlastung durch Einspeisung einen Anreiz zu geben, Einspeisung zu senken oder Lasten zu erhöhen.
- 5 Regionale Differenzierung der Netztarife innerhalb eines Versorgungsgebietes: um nur diejenigen Lasten oder Einspeisungen zu verschieben, die zur Behebung von Engpässen beitragen.

Laststeuerung: zum Teil ohne zusätzliche Fixkosten möglich.

Download Weiterbildung Shop Kontakt Login Wa

Schweizer Stromnetz angeschlossene Geräte

Alle Geräte und Anlagen die am Schweizer Stromnetz angeschlossen werden, müssen die Vorgaben der Dokumente auf dieser Seite jederzeit einhalten.

Transmission Code Balancing Concept Lândereinstellungen Schweiz für Energieerzeugungsanlagen (PV-Wechselrichter, Generatoren) Anforderungen von Ladestellen der Elektromobilität Dieses Dokument beschreibt eine standardisierte Ansteuerbarkeit von Ladestellen der Elektromobilität mittels einer drahtgeführten Kommunikationsstrecke zu einer Signalquelle des Netzbetreibers.

- Alle EV Ladestationen in der Schweiz müssen durch VNB eingeschränkt werden können.
- Für Eingriffe zur Abwendung kritischer Netzsituationen ist keine Vergütung geschuldet.
- Vorgelagerte Laststeuerung verursacht keine zusätzlichen Fixkosten.

- 1. Netztarif: Gestaltungsprinzipien
- 2. Netztarif: langfristig empfohlene Tarifdesigns
- 3. Netztarif: kurzfristig mögliche Tarifdesigns
- 4. Energietarif: Hedging durch Profilverträge
- 5. Ausblick

Ideal: Verursachergerechte Kostentragung

	Netztarif		
Kostentreiber:	Netzanschlusspunkte	Netzhöchstlast	
Entscheidung:	Netztopologie	Leistungsdimensionierung	
Anteil Kosten:	ca.60-70%	ca. 30-40%	

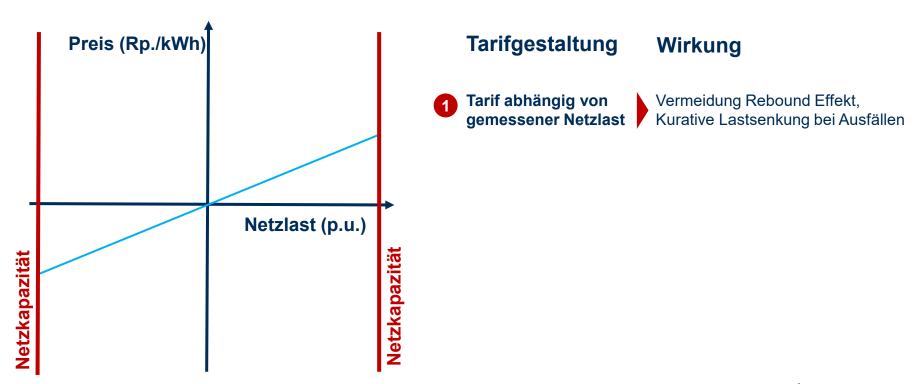
Energietarif Variable Produktion Kraftwerkseinsatz 100%

Geeignet für:

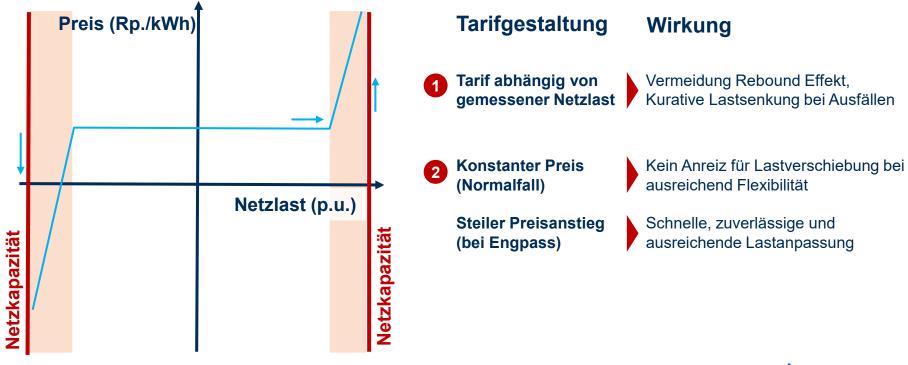
- Kunden, die Last selbst managen wollen
- EVUs, um Lasten der Kunden netzdienlich zu steuern

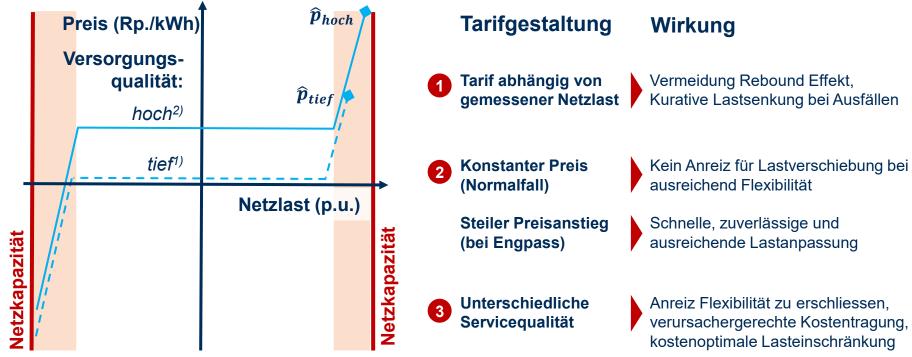
Umlage Kosten:

b) Konstante Preise	Regionaler Grundpreis pro Netzanschlusspunkt	gemessenen Netzlast konstanter Arbeitspreis	proportional zum Spotpreis konstanter Arbeitspreis
a) Variable Preise ¹	Pagionalar Grundaraia	Dynamischer Arbeitspreis abhängig von der regionalen,	Dynamischer Arbeitspreis


Geeignet für:

- Kunden, die kein Preisrisiko wollen
- Kunden, die ihre Lasten durch ein EVU steuern lassen


¹⁾ Kunden leisten Sicherheitsdeposit, um Zahlung im Fall hoher Preise zu gewährleisten (z.B. Maximale Monatsrechnung).


Ideal: Dynamischer Arbeitspreis, mit reduziertem Sicherheitsdeposit für Kunden mit tieferer Versorgungsqualität.

Ideal: Dynamischer Arbeitspreis, mit reduziertem Sicherheitsdeposit für Kunden mit tieferer Versorgungsqualität.

Ideal: Dynamischer Arbeitspreis, mit reduziertem Sicherheitsdeposit für Kunden mit tieferer Versorgungsqualität.

¹⁾ EVU erhält Steuerzugriff um Last ab \hat{p}_{tief} einzuschränken (verpflichtend).

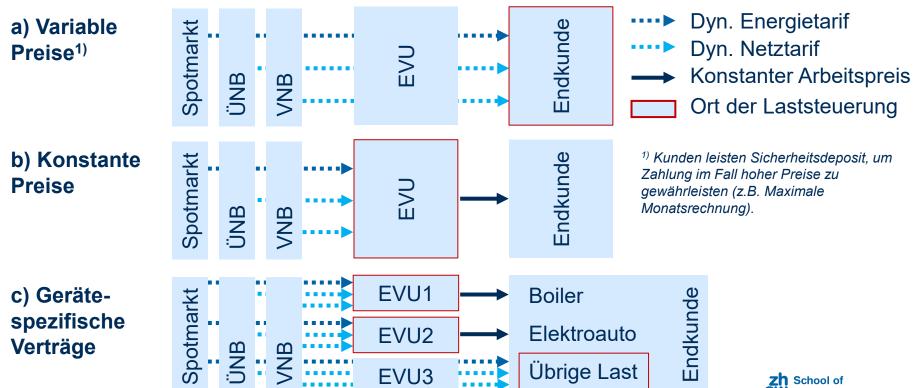
²⁾ EVU kann Steuerinfrastruktur ab \hat{p}_{hoch} für Kontingentierung einsetzen (optional).

Ideal: Vermarktung des dynamischen Arbeitstarifes an die Kunden

Tarifdetails

- proportional zum 15-min Durchschnitt der gemessenen Netzlast
- Laststeuerung durch Endkunden
- Sicherheitsdeposit (z.B. Maximale Wochenrechnung)

Ideal: Vermarktung der direkten Laststeuerung an die Kunden


Tarifdetails

- Konstanter Preis pro kWh
- Laststeuerung ausgewählter Geräte
- Preis pro kWh abhängig von Qualitätsniveau
 (Programmlaufzeit / Ladegeschwindigkeit / Temperaturabweichung...)

Ideal: Gerätespezifische Verträge

- 1. Netztarif: Gestaltungsprinzipien
- 2. Netztarif: langfristig empfohlene Tarifdesigns
- 3. Netztarif: kurzfristig mögliche Tarifdesigns
- 4. Energietarif: Hedging durch Profilverträge
- 5. Ausblick

Aktuell: Ansätze im aktuellen technischen und rechtlichen Rahmen

Netztarif	
Netzanschlusspunkte	Netzhöchstlast
Netztopologie	Leistungsdimensionierung
ca.60-70%	ca. 30-40%

Energietarif	
Lastzeitpunkt	
Kraftwerkseinsatz	
100%	

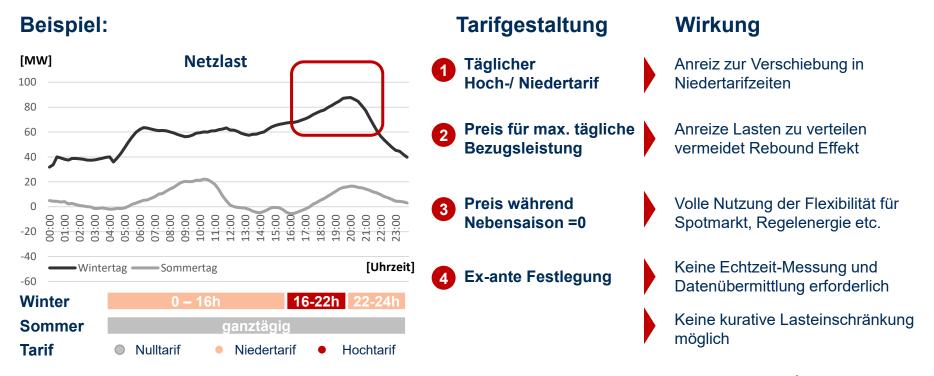
a) Variable Preise¹

Kostentreiber:

Entscheidung:

Anteil Kosten: Umlage Kosten:

b) konstante Preise


	Mehrstufiger Leistungspreis abhängig von der erwarteten Netzgesamtlast, oder	
konstanter Arbeitspreis	Dynamischer Arbeitspreis proportional zur gemessenen Netzgesamtlast	
	konstanter Arbeitspreis	

Dynamischer Arbeitspreis proportional zum **Spotpreis**

konstanter Arbeitspreis

¹⁾ Kunden leisten Sicherheitsdeposit, um Zahlung im Fall hoher Preise zu gewährleisten (z.B. Maximale Monatsrechnung).

Aktuell: Netzentgelt: Mehrstufiger Leistungspreis

Aktuell: Netzentgelt: Schrittweise Überführung ins Zielsystem

Techn. & rechtliche Voraussetzungen:

- Leistungsmessung beim Endkunden
- Fernauslesung der Messdaten
- Echtzeit-Messung der Netzgesamtlast
- Übermittlung Echtzeit Tarifsignal an Endkunden
- Echtzeit-Messung einzelne Netzelemente
 Dynamischer Einspeisetarif
- Anpassung rechtlicher Rahmen

Weiterentwicklungen des Tarifdesigns:

- Prognose Engpasswahrscheinlichkeit
- Einführung mehrstufiger täglicher Leistungspreise
- Kürzere Leistungsperiode
- Kürzere Vorlaufzeit für Tariffestlegung
- Regionale Differenzierung
- Unterschiedliche Servicequalität
- Gerätespez. Energiebezugsverträge

Netztarif für leistungsabhängige Kosten:

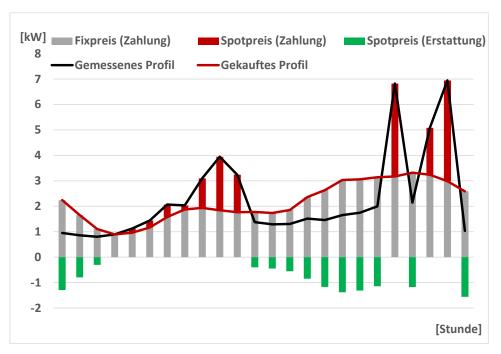
Mehrstufige Leistungspreise

Dynamische Arbeitspreise

Zielsystem

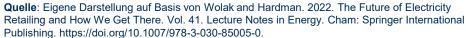
aw Management and Law

- 1. Netztarif: Gestaltungsprinzipien
- 2. Netztarif: langfristig empfohlene Tarifdesigns
- 3. Netztarif: kurzfristig mögliche Tarifdesigns
- 4. Energietarif: Hedging durch Profilverträge
- 5. Ausblick



Profilverträge schützen Kunden vor Preisrisiken, und ermöglichen trotzdem Einsparungen durch Lastverschiebung und Lastsenkung

Vertrag	Schutz vor Preisrisiken	Einsparung durch Lastverschiebung	Einsparung durch Lastsenkung
Fixpreise	$\overline{\mathbf{V}}$	×	×
Grosshandelspreise	×	\checkmark	\checkmark
Profilvertrag	lacksquare	\checkmark	$\overline{\mathbf{V}}$


Profilverträge: Illustration des Grundprinzips

ihr **gekauftes Lastprofil**

Kunden bezahlen einen Fixpreis für

- Mehrverbrauch wird zum
 Spotpreis bezahlt
- Minderverbrauch wird zum
 Spotpreis erstattet

- 1. Netztarif: Gestaltungsprinzipien
- 2. Netztarif: langfristig empfohlene Tarifdesigns
- 3. Netztarif: kurzfristig mögliche Tarifdesigns
- 4. Energietarif: Hedging durch Profilverträge
- 5. Ausblick

Ausblick

- BFE P&D Projekt mit Groupe-E zu "Netztarifen für dezentrale Laststeuerung" (NEDELA)
- 21st -22nd June: Workshop at Florence School of Regulation on "Future Electricity Tariffs" (<u>Registrierung</u> bis 31.Mai)

 31st July: Special Issue in Energy Policy on "Future Electricity Tariffs"

Weiterbildung zu "Smart-Grid-Strategies" (in Planung, ab Herbst 2023)